
Daniel Situnayake
& Jenny Plunkett
Foreword by Pete Warden

Daniel Situnayake
& Jenny Plunkett
Foreword by Pete Warden

AI at the Edge
Solving Real-World Problems with
Embedded Machine Learning

Compliments of

MACHINE LE ARNING

“AI at the Edge provides
an excellent introduction
on combining modern
AI techniques and
embedded systems.”

—Elecia White
Author of Making Embedded Systems

and host of the Embedded podcast

“Anyone joining this
exciting new field will
benefit from the deep
insights and clarity
of thought this book
provides.”

—Aurélien Geron
Former lead of YouTube’s automatic

video classification team
and best-selling author

“I can imagine it being
used as a reference
book, returning to it time
and time again.”

—Fran Baker
Director of Sustainability

and Social Impact, Arm

AI at the Edge

US $79.99 CAN $99.99
ISBN: 978-1-098-12020-7

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Edge AI is transforming the way computers interact with the
real world, allowing IoT devices to make decisions using the
99% of sensor data that was previously discarded due to
cost, bandwidth, or power limitations. With techniques like
embedded machine learning, developers can capture human
intuition and deploy it to any target —from ultra-low power
microcontrollers to embedded Linux devices.

This practical guide gives engineering professionals, including
product managers and technology leaders, an end-to-end
framework for solving real-world industrial, commercial, and
scientific problems with edge AI. You’ll explore every stage
of the process, from data collection to model optimization to
tuning and testing, as you learn how to design and support
edge AI and embedded ML products. Edge AI is destined to
become a standard tool for systems engineers. This high-level
road map helps you get started.

• Develop your expertise in AI and ML for edge devices
• Understand which projects are best solved with edge AI
• Explore key design patterns for edge AI apps
• Learn an iterative work!ow for developing AI systems
• Build a team with the skills to solve real-world problems
• Follow a responsible AI process to create e"ective products

Daniel Situnayake is head of machine learning at Edge Impulse,
where he leads embedded machine learning R&D.

Jenny Plunkett, senior developer relations engineer at Edge
Impulse, is a technical speaker, developer evangelist, and technical
content creator.

9 7 8 1 0 9 8 1 6 4 7 6 8

ISBN: 978-1-098-16476-8

https://edgeimpulse.com/?utm_campaign=O%27Reilly%20eBook&utm_source=paid&utm_medium=book

Praise for AI at the Edge

AI at the Edge introduces the new and fast-growing field of edge AI in a practical,
easy-to-follow way. It demystifies jargon and highlights real challenges that you are likely

to encounter when building edge AI applications. The book offers an essential guide to
going from concept to deployment—a must-read for getting started in the field.

—Wiebke Hutiri, Del! University of Technology

I really love the writing style which makes complex technical topics approachable and
digestible. I can imagine it being used as a reference book, returning to it time and

time again—which I will certainly be doing!
—Fran Baker, Director of Sustainability and Social Impact, Arm

What a wonderfully accessible and thorough introduction to the emerging field of edge
AI! It covers an impressive breadth of topics, from the core concepts to the latest

hardware and software tools, it’s full of actionable advice, and includes several end-to-end
examples. Anyone joining this exciting new field will benefit from the deep insights and

clarity of thought this book provides.
—Aurélien Geron, former lead of YouTube’s automatic

video classi"cation team and best-selling author

This is the guide to creating smarter devices: AI at the Edge provides an excellent
introduction on combining modern AI techniques and embedded systems.

—Elecia White, author of Making Embedded Systems and
host of the Embedded podcast

Daniel Situnayake and Jenny Plunkett

AI at the Edge
Solving Real-World Problems with

Embedded Machine Learning

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-12020-7

[LSI]

AI at the Edge
by Daniel Situnayake and Jenny Plunkett

Copyright © 2023 Daniel Situnayake and Jenny Plunkett. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Nicole Butterfield
Development Editor: Angela Rufino
Production Editor: Elizabeth Faerm
Copyeditor: nSight, Inc.
Proofreader: Charles Roumeliotis

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

January 2023: First Edition

Revision History for the First Edition
2023-01-10: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098120207 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. AI at the Edge, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Edge Impulse. See our statement of editorial
independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098120207
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Jenny would like to dedicate this book to every woman who is currently
pursuing, or is interested in pursuing, an engineering degree—you can do anything

you put your mind to.
Dan would like to dedicate this book to the Situnayake family. It’s been a tough few

years, but we always make it through as a team.

Table of Contents

Foreword from Edge Impulse. xv

Foreword. xvii

Preface. xix

1. A Brief Introduction to Edge AI. 1
Defining Key Terms 1

Embedded 1
The Edge (and the Internet of Things) 3
Artificial Intelligence 6
Machine Learning 8
Edge AI 10
Embedded Machine Learning and Tiny Machine Learning 12
Digital Signal Processing 12

Why Do We Need Edge AI? 13
To Understand the Benefits of Edge AI, Just BLERP 14
Edge AI for Good 18
Key Differences Between Edge AI and Regular AI 19

Summary 23

2. Edge AI in the Real World. 25
Common Use Cases for Edge AI 25

Greenfield and Brownfield Projects 26
Real-World Products 27

Types of Applications 32
Keeping Track of Objects 32
Understanding and Controlling Systems 34

vii

Understanding People and Living Things 36
Transforming Signals 39

Building Applications Responsibly 41
Responsible Design and AI Ethics 43
Black Boxes and Bias 46
Technology That Harms, Not Helps 49

Summary 53

3. The Hardware of Edge AI. 55
Sensors, Signals, and Sources of Data 55

Types of Sensors and Signals 58
Acoustic and Vibration 59
Visual and Scene 60
Motion and Position 62
Force and Tactile 63
Optical, Electromagnetic, and Radiation 64
Environmental, Biological, and Chemical 65
Other Signals 66

Processors for Edge AI 68
Edge AI Hardware Architecture 68
Microcontrollers and Digital Signal Processors 70
System-on-Chip 75
Deep Learning Accelerators 77
FPGAs and ASICs 78
Edge Servers 81
Multi-Device Architectures 82
Devices and Workloads 84

Summary 84

4. Algorithms for Edge AI. 85
Feature Engineering 85

Working with Data Streams 86
Digital Signal Processing Algorithms 88
Combining Features and Sensors 93

Artificial Intelligence Algorithms 95
Algorithm Types by Functionality 96
Algorithm Types by Implementation 101
Optimization for Edge Devices 116
On-Device Training 119

Summary 121

viii | Table of Contents

5. Tools and Expertise. 123
Building a Team for AI at the Edge 123

Domain Expertise 124
Diversity 126
Stakeholders 128
Roles and Responsibilities 129
Hiring for Edge AI 132
Learning Edge AI Skills 134

Tools of the Trade 136
Software Engineering 137
Working with Data 141
Algorithm Development 143
Running Algorithms On-Device 153
Embedded Software Engineering and Electronics 157
End-to-End Platforms for Edge AI 162

Summary 167

6. Understanding and Framing Problems. 169
The Edge AI Workflow 169

Responsible AI in the Edge AI Workflow 171
Do I Need Edge AI? 172

Describing a Problem 172
Do I Need to Deploy to the Edge? 173
Do I Need Machine Learning? 178
Practical Exercise 185

Determining Feasibility 186
Moral Feasibility 187
Business Feasibility 189
Dataset Feasibility 191
Technological Feasibility 192
Making a Final Decision 196
Planning an Edge AI Project 197

Summary 199

7. How to Build a Dataset. 201
What Does a Dataset Look Like? 201
The Ideal Dataset 203
Datasets and Domain Expertise 205
Data, Ethics, and Responsible AI 206

Minimizing Unknowns 208
Ensuring Domain Expertise 209

Table of Contents | ix

Data-Centric Machine Learning 210
Estimating Data Requirements 211

A Practical Workflow for Estimating Data Requirements 213
Getting Your Hands on Data 215

The Unique Challenges of Capturing Data at the Edge 217
Storing and Retrieving Data 220

Getting Data into Stores 222
Collecting Metadata 223

Ensuring Data Quality 225
Ensuring Representative Datasets 225
Reviewing Data by Sampling 227
Label Noise 229
Common Data Errors 231
Drift and Shift 233
The Uneven Distribution of Errors 234

Preparing Data 235
Labeling 235
Formatting 246
Data Cleaning 248
Feature Engineering 255
Splitting Your Data 256
Data Augmentation 261
Data Pipelines 263

Building a Dataset over Time 265
Summary 266

8. Designing Edge AI Applications. 267
Product and Experience Design 268

Design Principles 270
Scoping a Solution 271
Setting Design Goals 274

Architectural Design 278
Hardware, Software, and Services 278
Basic Application Architectures 279
Complex Application Architectures and Design Patterns 286
Working with Design Patterns 291

Accounting for Choices in Design 292
Design Deliverables 295

Summary 296

x | Table of Contents

9. Developing Edge AI Applications. 297
An Iterative Workflow for Edge AI Development 297

Exploration 298
Goal Setting 300
Bootstrapping 302
Test and Iterate 306
Deployment 313
Support 315

Summary 315

10. Evaluating, Deploying, and Supporting Edge AI Applications. 317
Evaluating Edge AI Systems 317

Ways to Evaluate a System 319
Useful Metrics 322
Techniques for Evaluation 334
Evaluation and Responsible AI 337

Deploying Edge AI Applications 338
Predeployment Tasks 339
Mid-Deployment Tasks 341
Postdeployment Tasks 342

Supporting Edge AI Applications 343
Postdeployment Monitoring 343
Improving a Live Application 350
Ethics and Long-Term Support 353

What Comes Next 356

11. Use Case: Wildlife Monitoring. 357
Problem Exploration 358
Solution Exploration 359
Goal Setting 359
Solution Design 360

What Solutions Already Exist? 360
Solution Design Approaches 361
Design Considerations 363
Environmental Impact 364
Bootstrapping 366
Define Your Machine Learning Classes 367

Dataset Gathering 367
Edge Impulse 368
Choose Your Hardware and Sensors 369
Data Collection 370

Table of Contents | xi

iNaturalist 372
Dataset Limitations 375
Dataset Licensing and Legal Obligations 376
Cleaning Your Dataset 376
Uploading Data to Edge Impulse 377

DSP and Machine Learning Workflow 379
Digital Signal Processing Block 380
Machine Learning Block 381

Testing the Model 392
Live Classification 392
Model Testing 393
Test Your Model Locally 395

Deployment 395
Create Library 396
Mobile Phone and Computer 397
Prebuilt Binary Flashing 400
Impulse Runner 401
GitHub Source Code 401

Iterate and Feedback Loops 401
AI for Good 403
Related Works 404

Datasets 404
Research 404

12. Use Case: Food Quality Assurance. 407
Problem Exploration 407
Solution Exploration 408
Goal Setting 409
Solution Design 409

What Solutions Already Exist? 410
Solution Design Approaches 410
Design Considerations 412
Environmental and Social Impact 413
Bootstrapping 414
Define Your Machine Learning Classes 414

Dataset Gathering 415
Edge Impulse 415
Choose Your Hardware and Sensors 416
Data Collection 417
Data Ingestion Firmware 417
Uploading Data to Edge Impulse 418

xii | Table of Contents

Cleaning Your Dataset 420
Dataset Licensing and Legal Obligations 422

DSP and Machine Learning Workflow 423
Digital Signal Processing Block 424
Machine Learning Block 426

Testing the Model 429
Live Classification 430
Model Testing 431

Deployment 432
Prebuilt Binary Flashing 433
GitHub Source Code 437

Iterate and Feedback Loops 437
Related Works 439

Research 439
News and Other Articles 440

13. Use Case: Consumer Products. 441
Problem Exploration 441
Goal Setting 442
Solution Design 442

What Solutions Already Exist? 443
Solution Design Approaches 443
Design Considerations 445
Environmental and Social Impact 446
Bootstrapping 447
Define Your Machine Learning Classes 447

Dataset Gathering 448
Edge Impulse 448
Choose Your Hardware and Sensors 449
Data Collection 450
Data Ingestion Firmware 450
Cleaning Your Dataset 452
Dataset Licensing and Legal Obligations 453

DSP and Machine Learning Workflow 454
Digital Signal Processing Block 455
Machine Learning Blocks 459

Testing the Model 463
Live Classification 463
Model Testing 465

Deployment 466
Prebuilt Binary Flashing 466

Table of Contents | xiii

GitHub Source Code 466
Iterate and Feedback Loops 467
Related Works 467

Research 468
News and Other Articles 468

Index. 471

xiv | Table of Contents

Foreword from Edge Impulse

In 2023 it has felt like everyone is talking about artificial intelligence. A convergence
of new and existing technologies has created novel capabilities, and business and
technical leaders are applying them to build mind-blowing products and experiences.
The public is taking note.

While much of the attention is on generative AI, with its gigantic models that output
natural-sounding text and images, there’s an even larger revolution happening at a
far smaller scale. Advances in software and hardware mean that embedded systems—
the tiny, hidden computers that run our world—have become capable of hosting
powerful AI algorithms that can read and interpret sensor data. With 28 billion
microcontrollers produced every year, the opportunity is tremendous.

What started in the labs of companies like Google, where I first worked on edge
AI, is now bringing new capabilities to every corner of our world. From the phone
in your pocket to the factory floor, AI and machine learning are making it possible
for devices to recognize voice commands, identify dangerous situations, monitor
health conditions, and protect endangered species. The most innovative companies
are using edge AI to reduce costs, improve customer experiences, and build products
that were never possible before. The rest are still catching up.

Despite this potential, the unfortunate fact is that most AI projects fail. Edge AI is the
intersection of two challenging disciplines: AI and machine learning, and embedded
engineering. Very few orgs have the skills to be productive with both. Much of the
success of AI projects depends on building the right team, and giving them access to
the right tools and skills for the job.

At Edge Impulse, where I lead the machine learning team, we build tools that help
organizations be successful with edge AI. We enable a team’s ML experts to make
sense of sensor data and to adapt their models to run on embedded systems, and we
empower the experienced embedded engineers to develop their own algorithms, no
prior knowledge required.

xv

I started at Edge Impulse as the first full-time employee, nearly four years ago.
We’ve since grown to a large, multidisciplinary team, including experts from across
many industries. This book, like the tools we’ve built, represents the knowledge we’ve
collectively uncovered about how to build successful projects in the edge AI space.
It draws insight from the thousands of real-world projects that companies have built
with our product.

Our goal as a company is to enable your existing developers to succeed with edge
AI—whether they’re ML practitioners or embedded software engineers—without
having to hire or train a whole new team. We use our deep organizational knowledge
to help you navigate the pitfalls and challenges of developing an AI product, lower
your time to market, and help your engineers feel immediately productive. As these
chapters show, our tools can both lower the costs of development and reduce the risks
associated with delivering AI projects.

As a truly transformative technology, edge AI represents vast potential for impact.
Some of those who read this book will go on to create products that transform
their respective industries, create huge economic value, and deliver improvements in
quality of life to millions of people. We hope that with our help, it’s your team that
succeeds.

— Daniel Situnayake
Head of ML at Edge Impulse,

coauthor of AI at the Edge and TinyML

xvi | Foreword from Edge Impulse

1 From GitHub’s Twitter account.

Foreword

In 2022, GitHub CEO Thomas Dohmke said, “I think the shift to the cloud will
happen at such a rapid rate, that in just a few years I predict there will be no more
code on your local computer.”1 This book does a great job of explaining why I and a
lot of other people in the emerging field of edge ML think he’s dead wrong.

We’re starting to see the emergence of many practical applications like high-quality
voice recognition, forest fire prevention, and smart home controls that are only
possible because local devices are now capable of running advanced machine learning
algorithms. Jenny and Dan have put together a wonderful book that not only explains
why adding intelligence to edge applications is so crucial to solving important prob‐
lems, but also walks the reader through the steps required to design, implement, and
test these kinds of applications.

It can feel pretty intimidating when you first start looking at a machine learning
project on the edge. The field involves a lot of jargon, is changing rapidly, and
requires knowledge from domains like embedded systems and artificial intelligence
that have traditionally not been well integrated. What the authors have achieved is a
gentle but thorough introduction to everything you need to know to work effectively
on an application. They’ve also managed to make it accessible to a wide range of
readers thanks to their emphasis on examples from the real world and use of plain
English instead of math or code to explain even complex topics. This makes the
book easy to recommend to product managers, executives, and designers, as well
as engineers.

They’ve managed to take a lot of hard-won knowledge gained from experience
and distill it down to lessons that will give any team working on these kinds of
applications a big head start.

xvii

https://oreil.ly/WgTQu

They also manage to explore beyond the practical concerns of how to build an edge
ML application, and will help you understand how to avoid causing harm with your
work. The ethical concerns around AI can seem overwhelming, but the authors
manage to break them down into questions you can apply in a straightforward way as
part of the project planning and testing process. This will help all the stakeholders on
your project collaborate, and hopefully avoid a lot of the potential dangers involved
in giving computers more decision-making power over our lives.

I’ve been working on edge ML applications for over ten years now, first at a startup,
then as a tech lead at Google—and now as the founder of another startup, and I will
be asking everyone who joins our team to read this book. If you have any interest
at all in this area, whether as a coder, designer, manager, or just someone who cares
about this new technology that’s emerging in our world, I can’t recommend this book
highly enough. I guarantee that reading it will introduce you to a lot of fascinating
ideas, as well as help you build the next generation of smart devices.

— Pete Warden, CEO at Useful Sensors Inc.,
creator of TensorFlow Lite for Microcontrollers

xviii | Foreword

Preface

Over the past few years, a growing community of engineers and researchers have
quietly rewritten the rules for how computers interact with the physical world. The
result, a technology known as “edge artificial intelligence,” promises to upend a
century of computer history and touch the lives of every human being.

With a tiny software update, edge AI technology can grant cheap, energy-efficient
processors—already inside everything from dishwashers to thermostats—the ability
to perceive and understand the world. We can empower everyday objects with their
own intelligence, no longer dependent on data-hungry centralized servers. And next-
generation tools put this magic in reach of everyone, from high school students to
conservation researchers.

There are already many edge AI products out there in the world. Here are some that
we’ll meet in the pages of this book:

• Smart devices that help prevent forest fires caused by electricity transmission, by•
mounting to electricity pylons and predicting when a fault may occur

• Wearable bands that keep firefighters safe by warning when they’re at risk from•
heat strain and overexertion

• Voice user interfaces that provide hands-free control of technology, no internet•
connection required

• Smart collars that monitor the movements of wild elephants, helping researchers•
understand their behavior and protect them from conflict

• Wildlife cameras that identify specific animal species and help scientists•
understand their behavior

The technology of edge AI is still fresh and new, and these existing applications are
just a glimpse of what is possible. As more people learn how to work with edge AI,
they’ll create applications that solve problems across every avenue of human activity.

xix

#e goal of this book is to empower you to be one of them. We want to help you create
successful edge AI products based on your own unique perspectives.

About This Book
This book is designed for the engineers, scientists, product managers, and decision
makers who will drive this revolution. It’s a high-level guide to the entire space, pro‐
viding a workflow and a framework for solving real-world problems using edge AI.

Among other things, we hope to teach you:

• The opportunities, limitations, and risks inherent to various edge AI technologies•
• A framework for analyzing problems and designing solutions using AI and•

embedded machine learning
• An end-to-end practical workflow for successfully developing edge AI•

applications

In the first part of the book, the initial chapters will introduce and discuss the key
concepts, helping you understand the lay of the land. The next few will take you
through the practical processes that will help you design and implement your own
applications.

In the second part of the book, starting in Chapter 11, we’ll use three end-to-end
walkthroughs to demonstrate how to apply your knowledge to solve real problems in
scientific, industrial, and consumer projects.

By the end of the book, you’ll feel confident in viewing the world through the lens
of edge AI, and you’ll have a solid set of tools you can use to help build effective
solutions.

This book covers a lot of topics! For an overview of everything
we’ve included, take a quick look at the table of contents.

What to Expect
This isn’t a programming book or a tutorial for a particular set of tools, so don’t
expect a ton of line-by-line code explanations or step-by-step guides to using specific
software. Instead, you’ll learn how to apply general frameworks to solve problems
using whichever tools are best suited to the job.

xx | Preface

1 Edge Impulse is described in the academic paper “Edge Impulse: An MLOps Platform for Tiny Machine
Learning” (S. Hymel et. al, 2022).

That said, this is a topic that benefits greatly from tangible, interactive examples that
can be explored, customized, and built upon. In the course of the book, we’ll provide
all sorts of artifacts you can explore—from Git repositories to free online datasets and
example training pipelines.

Many of these will be hosted in Edge Impulse, which is an engineering tool for
building edge AI applications.1 It’s built on open source technologies and standard
best practices, so you’ll be able to understand the principles even if you do your own
work on a different platform. The book’s authors are both big fans of Edge Impulse—
but they may be biased, since they are part of the team that built it!

To guarantee portability, all the artifacts of the machine learning
pipeline can be exported from Edge Impulse in open formats,
including the datasets, machine learning models, and C++ imple‐
mentations of any signal processing code.

What You Need to Know Already
This book is about building software that runs on edge devices, so some familiarity
with the high-level concepts of embedded development will be helpful. This could be
on either resource-constrained devices such as microcontrollers or digital signal pro‐
cessors (DSPs), or on general-purpose devices such as embedded Linux computers.

That said, if you’re just getting started with embedded software, you should have
no trouble keeping up! We’ll keep things simple and introduce new topics as they
come up.

Beyond that, no particular knowledge is assumed. Since the goal of this book is
to provide a practical road map for an entire field of engineering, we’ll cover a
lot of topics at a high level. If you’re interested in digging deeper into anything
we mention—from the fundamentals of machine learning to the essentials of ML
application design—we’ll provide lots of resources that we’ve found useful in our
own learning.

Responsible, Ethical, and E!ective AI
The most important part of building any kind of application is ensuring that it works
correctly in the real world. Unfortunately, AI applications are especially vulnerable
to a class of issues that make them appear to work well when in reality they are
failing—often in very harmful ways.

Preface | xxi

https://oreil.ly/Dyd-Z
https://oreil.ly/Dyd-Z
https://edgeimpulse.com

Avoiding this class of problems will be a core theme—if not the core theme—of this
book. Because modern AI development is an iterative process, it isn’t enough to test
your system at the end of the workflow to see whether it works. Instead, you need
to be thinking about the potential pitfalls at every step along the way. You’ll have to
understand where the risks lie, critically review your intermediate results, and make
informed decisions that take the needs of your stakeholders into account.

Over the course of the book, we’ll introduce a strong framework that will help
you understand, reason, measure performance, and make decisions based on an
awareness of the things that can go wrong when building AI applications. It will be
the foundation for our entire development process and will shape the way we design
our applications.

This process begins at the very inception of a project. To build effective applications,
it’s critical to understand that there are certain use cases for which our current
approach to artificial intelligence is simply not an appropriate tool. In many situa‐
tions, the risk of causing harm—physical, financial, or societal—outweighs the poten‐
tial benefit of deploying AI. This book will teach you how to identify these risks and
take them into account when exploring the feasibility of a project.

As domain experts, we have the responsibility to make sure the technology we create
is used appropriately. Nobody else is better positioned to do this work, so it falls on us
to do it well. This book will help you make the right decisions and create applications
that perform well, avoid harm, and benefit the wider world.

Further Resources
A book that covered all of embedded AI, from low-level implementation to high-level
design patterns, would be the size of an entire bookshelf! Instead of trying to squeeze
everything into one volume, the book you’re reading will provide a detailed but
high-level road map of the whole space.

To zoom in on the minutiae that are relevant for your particular project, “Learning
Edge AI Skills” on page 134 recommends plenty of further resources.

Reaching Out
The authors would love to hear from you; get in touch at hello@edgeaibook.com.

xxii | Preface

mailto:hello@edgeaibook.com

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/ai-at-the-edge.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

Preface | xxiii

https://github.com/ai-at-the-edge
mailto:bookquestions@oreilly.com

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “AI at the Edge by
Daniel Situnayake and Jenny Plunkett (O’Reilly). Copyright 2023 Daniel Situnayake
and Jenny Plunkett, 978-1-098-12020-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

xxiv | Preface

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/ai-at-the-edge.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
This book wouldn’t have been possible without the hard work and support of a large
number of people to whom we are very grateful.

We’ve been honored with a foreword by the one and only Pete Warden, who—beyond
being a visionary technologist who deserves much of the credit for launching this
field—is a wonderful human being and a great friend. Thank you so much for your
support, Pete!

We extend our deep gratitude to Wiebke (Toussaint) Hutiri, who went truly above
and beyond in helping shape and inform the responsible AI content in this book,
including contributing a fantastic introduction to “Responsible Design and AI Ethics”
on page 43. You are a star in your field.

We are indebted to our incredible panel of technical reviewers and advisors whose
wisdom and insight has had such a huge impact on this book. Their names are Alex
Elium, Aurélien Geron, Carlos Roberto Lacerda, David J. Groom, Elecia White, Fran
Baker, Jen Fox, Leonardo Cavagnis, Mat Kelcey, Pete Warden, Vijay Janapa Reddi, and
Wiebke (Toussaint) Hutiri. An additional big thanks to Benjamin Cabé for allowing
us to feature his artificial nose project. Any inaccuracies are entirely the responsibility
of the authors.

We’d also like to thank the amazing team at O’Reilly, especially Angela Rufino, who
has shepherded us through the writing process with the utmost understanding and
care. Major gratitude to Elizabeth Faerm, Kristen Brown, Mike Loukides, Nicole
Taché, and Rebecca Novack.

This book would not exist without the support of our team at Edge Impulse, an
all-star cast of absolute heroes. Special thanks to the founders, Zach Shelby and
Jan Jongboom, for believing in our vision for this book, supporting us in making
it happen, and creating a space where ideas can bloom. Much love to the entire
team, which at the time of writing includes: Adam Benzion, Alessandro Grande,
Alex Elium, Amir Sherman, Arjan Kamphuis, Artie Beavis, Arun Rajasekaran,

Preface | xxv

https://oreil.ly/ai-at-the-edge
mailto:bookquestions@oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia
https://petewarden.com
https://wiebketoussaint.com

Ashvin Roharia, Aurelien Lequertier, Carl Ward, Clinton Oduor, David Schwarz,
David Tischler, Dimi Tomov, Dmitry Maslov, Emile Bosch, Eoin Jordan, Evan Rust,
Fernando Jiménez Moreno, Francesco Varani, Jed Huang, Jim Edson, Jim van der
Voort, Jodie Lane, John Pura, Jorge Silva, Joshua Buck, Juliette Okel, Keelin Murphy,
Kirtana Moorthy, Louis Moreau, Louise Paul, Maggi Yang, Mat Kelcey, Mateusz
Majchrzycki, Mathijs Baaijens, Mihajlo Raljic, Mike Senese, Mikey Beavis, MJ Lee,
Nabil Koroghli, Nick Famighetti, Omar Shrit, Othman Mekhannene, Paige Holvik,
Raul James, Raul Vergara, RJ Vissers, Ross Lowe, Sally Atkinson, Saniea Akhtar, Sara
Olsson, Sergi Mansilla, Shams Mansoor, Shawn Hanscom, Shawn Hymel, Sheena
Patel, Tyler Hoyle, Vojislav Milivojevic, William DeLey, Yan Li, Yana Vibe, and Zin
Kyaw. You make magic happen.

Jenny would like to thank her Texas family and friends for being super supportive
over the years, and her cats Blue Gene and Beatrice for being the best coworkers.
She especially would like to thank her dad, Michael Plunkett, who encouraged her to
pursue electrical engineering at The University of Texas at Austin, and who inspired
her lifelong curiosity in new technologies.

Dan would like to thank his family and friends for being supportive of every big
adventure. He’s deeply grateful to Lauren Ward for her love and partnership through‐
out all of our journeys. And he thanks Minicat for her calming feline presence—and
permission to use her photographs in this book.

xxvi | Preface

CHAPTER 1

A Brief Introduction to Edge AI

Welcome on board! In this chapter, we’ll be taking a comprehensive tour of the edge
AI world. We’ll define the key terms, learn what makes “edge AI” different from other
AI, and explore some of the most important use cases. Our goal for this chapter is to
answer these two important questions:

• What is edge AI, anyway?•
• Why would I ever need it?•

De"ning Key Terms
Each area of technology has its own taxonomy of buzzwords, and edge AI is no
different. In fact, the term edge AI is a union of two buzzwords, fused together into
one mighty term. It’s often heard alongside its siblings, embedded machine learning
and TinyML.

Before we move on, we better spend some time defining these terms and understand‐
ing what they mean. Since we’re dealing with compound buzzwords, let’s deal with
the most fundamental parts first.

Embedded
What is “embedded”? Depending on your background, this may be the most familiar
of all the terms we’re trying to describe. Embedded systems are the computers that
control the electronics of all sorts of physical devices, from Bluetooth headphones to
the engine control unit of a modern car. Embedded so!ware is software that runs on
them. Figure 1-1 shows a few places where embedded systems can be found.

1

1 As reported by Business Wire.

Figure 1-1. Embedded systems are present in every part of our world, including the home
and the workplace

Embedded systems can be tiny and simple, like the microcontroller that controls a
digital watch, or large and sophisticated, like the embedded Linux computer inside
a smart TV. In contrast to general-purpose computers, like a laptop or smartphone,
embedded systems are usually meant to perform one specific, dedicated task.

Since they power much of our modern technology, embedded systems are extraordi‐
narily widespread. In fact, there were over 28 billion microcontrollers shipped in the
year 20201—just one type of embedded processor. They’re in our homes, our vehicles,
our factories, and our city streets. It’s likely you are never more than a few feet from
an embedded system.

2 | Chapter 1: A Brief Introduction to Edge AI

https://oreil.ly/xa0o-

It’s common for embedded systems to reflect the constraints of the environments into
which they are deployed. For example, many embedded systems are required to run
on battery power, so they’re designed with energy efficiency in mind—perhaps with
limited memory or an extremely slow clock rate.

Programming embedded systems is the art of navigating these constraints, writing
software that performs the task required while making the most out of limited
resources. This can be incredibly difficult. Embedded systems engineers are the
unsung heroes of the modern world. If you happen to be one, thank you for your
hard work!

The Edge (and the Internet of Things)
The history of computer networks has been a gigantic tug of war. In the first
systems—individual computers the size of a room—computation was inherently
centralized. There was one machine, and that one machine did all the work.

Eventually, however, computers were connected to terminals (as shown in Figure 1-2)
that took over some of their responsibilities. Most of the computation was happening
in the central mainframe, but some simple tasks—like figuring out how to render
letters onto a cathode-ray tube screen—were done by the terminal’s electronics.

Figure 1-2. Mainframe computers performed the bulk of the computation, while simple
terminals processed input, printed output, and rendered basic graphics

De"ning Key Terms | 3

2 Expected to grow to 27 billion by 2025, according to IoT Analytics.

Over time, terminals became more and more sophisticated, taking over more and
more functions that were previously the job of the central computer. The tug-of-war
had begun! Once the personal computer was invented, small computers could do
useful work without even being connected to another machine. The rope had been
pulled to the opposite extreme—from the center of the network to the edge.

The growth of the internet, along with web applications and services, made it possible
to do some really cool stuff—from streaming video to social networking. All of this
depends on computers being connected to servers, which have gradually taken over
more and more of the work. Over the past decade, most of our computing has
become centralized again—this time in the “cloud.” When the internet goes down,
our modern computers aren’t much use!

But the computers we use for work and play are not our only connected devices. In
fact, it is estimated that in 2021 there were 12.2 billion assorted items connected to
the internet,2 creating and consuming data. This vast network of objects is called the
Internet of Things (IoT), and it includes everything you can think of: industrial sen‐
sors, smart refrigerators, internet-connected security cameras, personal automobiles,
shipping containers, fitness trackers, and coffee machines.

The first ever IoT device was created in 1982. Students at Carnegie
Mellon University connected a Coke vending machine to the
ARPANET—an early precursor to the internet—so they could
check whether it was empty without leaving their lab.

All of these devices are embedded systems containing microprocessors that run
software written by embedded software engineers. Since they’re at the edge of the
network, we can also call them edge devices. Performing computation on edge devices
is known as edge computing.

The edge isn’t a single place; it’s more like a broad region. Devices at the edge of the
network can communicate with each other, and they can communicate with remote
servers, too. There are even servers that live at the edge of the network. Figure 1-3
shows how this looks.

4 | Chapter 1: A Brief Introduction to Edge AI

https://oreil.ly/yMRAF
https://oreil.ly/B510Z
https://oreil.ly/B510Z

Figure 1-3. Devices at the edge of the network can communicate with the cloud, with
edge infrastructure, and with each other; edge applications generally span multiple
locations within this map (for example, data might be sent from a sensor-equipped IoT
device to a local edge server for processing)

There are some major benefits to being at the edge of the network. For one, it’s where
all the data comes from! Edge devices are our link between the internet and the
physical world. They can use sensors to collect data based on what is going on around
them, be that the heart rate of a runner or the temperature of a cold drink. They can
make decisions on that data locally and send it to other locations. Edge devices have
access to data that nobody else does.

De"ning Key Terms | 5

3 Embedded engineering and mobile development are typically separate disciplines. Even within a mobile
device, the embedded firmware and operating system are distinct from mobile applications. This book focuses
on embedded engineering, so we won’t talk much about building mobile apps—but we will cover techniques
that are relevant in both cases.

Are Mobile Phones and Tablets Edge Devices?

As portable computers that live at the edge of the network, mobile
phones, tablets, and even personal computers are all edge devices.
Mobile phones were one of the first platforms to feature edge
AI: modern mobile phones use it for many purposes, from voice
activation to smart photography.3

We’ll come back to edge devices later (since they’re the focus of this book). Until then,
let’s continue to define some terms.

Arti"cial Intelligence
Phew! This is a big one. Artificial intelligence (AI) is a very big idea, and it’s terribly
hard to define. Since the dawn of time, humans have dreamed of creating intelligent
entities that can help us in our struggle to survive. In the modern world we dream of
robot sidekicks who assist with our adventures: hyperintelligent, synthetic minds that
will solve all of our problems, and miraculous enterprise products that will optimize
our business processes and guarantee us rapid promotion.

But to define AI, we have to define intelligence—which turns out to be particularly
tough. What does it mean to be intelligent? Does it mean that we can talk, or think?
Clearly not—just ask the slime mold (see Figure 1-4), a simple organism with no
central nervous system that is capable of solving a maze.

Figure 1-4. Slime molds are single-celled organisms that have been documented as being
able to solve mazes in order to locate food, via a process of biological computation—
as shown in “Slime Mould Solves Maze in One Pass Assisted by Gradient of Chemo-
Attractants” (Andrew Adamatzky, arXiv, 2011)

6 | Chapter 1: A Brief Introduction to Edge AI

https://oreil.ly/Ecrq9
https://oreil.ly/Ecrq9

Since this isn’t a philosophy book, we don’t have the time to fully explore the topic of
intelligence. Instead, we want to suggest a quick-and-dirty definition:

Intelligence means knowing the right thing to do at the right time.

This probably doesn’t stand up to academic debate, but that’s fine with us. It gives us a
tool to explore the subject. Here are some tasks that require intelligence, according to
our definition:

• Taking a photo when an animal is in the frame•
• Applying the brakes when a driver is about to crash•
• Informing an operator when a machine sounds broken•
• Answering a question with relevant information•
• Creating an accompaniment to a musical performance•
• Turning on a faucet when someone wants to wash their hands•

Each of these problems involves both an action (turning on a faucet) and a precondi‐
tion (when someone wants to wash their hands). Within their own context, most
of these problems sound relatively simple—but, as anyone who has used an airport
restroom knows, they are not always straightforward to solve.

It’s pretty easy for most humans to perform most of these tasks. We’re highly capable
creatures with general intelligence. But it’s possible for smaller systems with more
narrow intelligence to perform the tasks, too. Take our slime mold—it may not
understand why it is solving a maze, but it’s certainly able to do it.

That said, the slime mold is unlikely to also know the right moment to turn on a
faucet. Generally speaking, it’s a lot easier to perform a single, tightly scoped task (like
turning on a faucet) than to be able to perform a diverse set of entirely different tasks.

Creating an artificial general intelligence, equivalent to a human being, would be
super difficult—as decades of unsuccessful attempts have shown. But creating some‐
thing that operates at slime mold level can be much easier. For example, preventing
a driver from crashing is, in theory, quite a simple task. If you have access to
both their current speed and their distance from a wall, you can do it with simple
conditional logic:

current_speed = 10 # In meters per second
distance_from_wall = 50 # In meters
seconds_to_stop = 3 # The minimum time in seconds required to stop the car
safety_buffer = 1 # The safety margin in seconds before hitting the brakes

Calculate how long we’ve got before we hit the wall
seconds_until_crash = distance_from_wall / current_speed

Make sure we apply the brakes if we’re likely to crash soon

De"ning Key Terms | 7

4 For many years it was hoped that artificial general intelligence could be achieved by complex conditional
logic, hand-tuned by engineers. It has turned out to be a lot more complicated than that!

if seconds_until_crash < seconds_to_stop + safety_buffer:
 applyBrakes()

Clearly, this simplified example doesn’t account for a lot of factors. But with a
little more complexity, a modern car with a driver assistance system based on this
conditional logic could arguably be marketed as AI.4

There are two points we are trying to make here: the first is that intelligence is quite
hard to define, and many rather simple problems require a degree of intelligence
to solve. The second is that the programs that implement this intelligence do not
necessarily need to be particularly complex. Sometimes, a slime mold will do.

So, what is AI? In simple terms, it’s an artificial system that makes intelligent deci‐
sions based on some kind of input. And one way to create AI is with machine
learning.

Machine Learning
At its heart, machine learning (ML) is a pretty simple concept. It’s a way to
discover patterns in how the world works—but automatically, by running data
through algorithms.

We often hear AI and machine learning used interchangeably, as if they are the
same thing—but this isn’t the case. AI doesn’t always involve machine learning, and
machine learning doesn’t always involve AI. That said, they pair together very nicely!

The best way to introduce machine learning is through an example. Imagine you’re
building a fitness tracker—it’s a little wristband that an athlete can wear. It contains
an accelerometer, which tells you how much acceleration is happening on each axis
(x, y, and z) at a given moment in time—as shown in Figure 1-5.

Figure 1-5. #e output of a three-axis accelerometer sampled at 6.25 Hz

8 | Chapter 1: A Brief Introduction to Edge AI

To help your athletes, you want to keep an automatic log of the activities they are
doing. For example, an athlete might spend an hour running on Monday and then an
hour swimming on Tuesday.

Since our movements while swimming are quite different from our movements while
running, you theorize that you might be able to tell these activities apart based on
the output of the accelerometer in your wristband. To collect some data, you give
prototype wristbands to a dozen athletes and have them perform specific activities—
either swimming, running, or doing nothing—while the wristbands log data (see
Figure 1-6).

Now that you have a dataset, you want to try to determine some rules that will help
you understand whether a particular athlete is swimming, running, or just chilling
out. One way to do this is by hand: analyzing and inspecting the data to see if
anything stands out to you. Perhaps you notice that running involves more rapid
acceleration on a particular axis than swimming. You can use this information to
write some conditional logic that determines the activity based on the reading from
that axis.

Analyzing data by hand can be tricky, and it generally requires expert knowledge
about the domain (such as human movements during sport). An alternative to
manual analysis might be to use machine learning.

Figure 1-6. #e output of a three-axis accelerometer showing a di$erent activity than in
Figure 1-5; each activity can be characterized by a pattern of changes in acceleration on
each axis over time

With an ML approach, you feed all of your athletes’ data into a training algorithm.
When provided with both the accelerometer data and information about which
activity the athlete is currently performing, the algorithm does its best to learn a
mapping between the two. This mapping is called a model.
Hopefully, if the training was successful, your new machine learning model can
take a brand new, never-seen-before input—a sample of accelerometer data from a

De"ning Key Terms | 9

particular window in time—and tell you which activity an athlete is performing. This
process is known as inference.

This ability to understand new inputs is called generalization. During training, the
model has learned the characteristics that distinguish running from swimming. You
can then use the model in your fitness tracker to understand fresh data, in the same
way that you might use the conditional logic we mentioned earlier.

There are lots of different machine learning algorithms, each with their own
strengths and drawbacks—and ML isn’t always the best tool for the job. Later in
this chapter we’ll discuss the scenarios where machine learning is the most helpful.
But a nice rule of thumb is that machine learning really shines when our data is really
complex.

Edge AI
Congratulations, we’ve made it to our first compound buzzword! Edge AI is, unsur‐
prisingly, the combination of edge devices and artificial intelligence.

As we discussed earlier, edge devices are the embedded systems that provide the link
between our digital and physical worlds. They typically feature sensors that feed them
information about the environment they are close to. This gives them access to a
metaphorical fire hose of high-frequency data.

We’re often told that data is the lifeblood of our modern economy, flowing through‐
out our infrastructure and enabling organizations to function. That’s definitely true—
but all data is not created equally. The data obtained from sensors tends to have a
very high volume but a relatively low informational content.

Imagine the accelerometer-based wristband sensor we described in the previous
section. The accelerometer is capable of taking a reading many hundreds of times
per second. Each individual reading tells us very little about the activity currently
taking place—it’s only in aggregate, over thousands of readings, that we can begin to
understand what is going on.

Typically, IoT devices have been viewed as simple nodes that collect data from sensors
and then transmit it to a central location for processing. The problem with this
approach is that sending such large volumes of low-value information is extraordi‐
narily costly. Not only is connectivity expensive, but transmitting data uses a ton of
energy—which is a big problem for battery-powered IoT devices.

Because of this problem, the vast majority of data collected by IoT sensors has usually
been discarded. We’re collecting a ton of sensor data, but we’re unable to do anything
with it.

Edge AI is the solution to this problem. Instead of having to send data off to some
distant location for processing, what if we do it directly on-device, where the data is

10 | Chapter 1: A Brief Introduction to Edge AI

being generated? Now, instead of relying on a central server, we can make decisions
locally—no connectivity required.

And if we still want to report information back to upstream servers, or the cloud, we
can transmit just the important information instead of having to send every single
sensor reading. That should save a lot of cost and energy.

There are many different ways to deploy intelligence to the edge. Figure 1-7 shows
the continuum from cloud AI to fully on-device intelligence. As we’ll see later in
this book, edge AI can be spread across entire distributed computing architectures—
including some nodes at the very edge, and others in local gateways or the cloud.

As we’ve seen, artificial intelligence can mean many different things. It can be super
simple: a touch of human insight encoded in a little simple conditional logic. It can
also be super sophisticated, based on the latest developments in deep learning.

Edge AI is exactly the same. At its most basic, edge AI is about making some
decisions on the edge of the network, close to where the data is made. But it can also
take advantage of some really cool stuff. And that brings us nicely to the next section!

Figure 1-7. #e continuum between cloud intelligence and fully on-device intelligence;
these six levels were described by “Edge Intelligence: Paving the Last Mile of Arti"cial
Intelligence with Edge Computing” (Zhou et. al., Proceedings of the IEEE, 2019)

De"ning Key Terms | 11

https://oreil.ly/8uWK-
https://oreil.ly/8uWK-

5 The term TinyML is a registered trademark of the TinyML Foundation.

Embedded Machine Learning and Tiny Machine Learning
Embedded ML is the art and science of running machine learning models on embed‐
ded systems. Tiny machine learning, or TinyML,5 is the concept of doing this on
the most constrained embedded hardware available—think microcontrollers, digital
signal processors, and small field programmable gate arrays (FPGAs).

When we talk about embedded ML, we’re usually referring to machine learning
inference—the process of taking an input and coming up with a prediction (like
guessing a physical activity based on accelerometer data). The training part usually
still takes place on a conventional computer.

Embedded systems often have limited memory. This raises a challenge for running
many types of machine learning models, which often have high requirements for
both read-only memory (ROM) (to store the model) and RAM (to handle the inter‐
mediate results generated during inference).

They are often also limited in terms of computation power. Since many types of
machine learning models are quite computationally intensive, this can also raise
problems.

Luckily, over the past few years there have been many advances in optimization that
have made it possible to run quite large and sophisticated machine learning models
on some very small, low-power embedded systems. We’ll learn about some of those
techniques over the next few chapters!

Embedded machine learning is often deployed alongside its trusty companion, digital
signal processing. Before we move on, let’s define that term, too.

Digital Signal Processing
In the embedded world we often work with the digital representations of signals.
For example, an accelerometer gives us a stream of digital values that correspond to
acceleration on three axes, and a digital microphone gives us a stream of values that
correspond to sound levels at a particular moment in time.

Digital signal processing (DSP) is the practice of using algorithms to manipulate
these streams of data. When paired with embedded machine learning, we often use
DSP to modify signals before feeding them into machine learning models. There are a
few reasons why we might want to do this:

• Cleaning up a noisy signal•
• Removing spikes or outlying values that might be caused by hardware issues•

12 | Chapter 1: A Brief Introduction to Edge AI

6 This will be explained in “Spectral analysis” on page 91.

• Extracting the most important information from a signal•
• Transforming the data from the time domain to the frequency domain6•

DSP is so common for embedded systems that often embedded chips have super fast
hardware implementations of common DSP algorithms, just in case you need them.

We now share a solid understanding of the most important terms in this book.
Figure 1-8 shows how they fit together in context.

Figure 1-8. #is diagram shows some of the most important concepts in edge AI in
context with each other—from most general at the top to most speci"c at the bottom

In the next section, we’ll dive deep into the topic of edge AI and start to break down
what makes it such an important technology.

Why Do We Need Edge AI?
Imagine that this morning you went on a trail run through Joshua Tree National Park,
a vast expanse of wilderness in the Southern California desert. You listened to music
the whole time, streamed to your phone via an uninterrupted cellular connection. At
a particularly beautiful spot, deep in the mountains, you snapped a photograph and
sent it to your partner. A few minutes later you received their reply.

In a world where even the most remote places have some form of data connection,
why do we need edge AI? What is the point of tiny devices that can make their own

Why Do We Need Edge AI? | 13

decisions if the internet’s beefy servers are only a radio burst away? With all of the
added complication, aren’t we just making life more difficult for ourselves?

As you may have guessed, the answer is no! Edge AI solves some very real prob‐
lems that otherwise stand in the way of making our technology work better for
human beings. Our favorite framework for explaining the benefits of edge AI is a
rude-sounding mnemonic: BLERP.

To Understand the Bene"ts of Edge AI, Just BLERP
BLERP? Jeff Bier, founder of the Edge AI and Vision Alliance, created this excellent
tool for expressing the benefits of edge AI. It consists of five words:

• Bandwidth•
• Latency•
• Economics•
• Reliability•
• Privacy•

Armed with BLERP, anyone can easily remember and explain the benefits of edge AI.
It’s also useful as a filter to help decide whether edge AI is well suited for a particular
application.

Let’s go through it, word by word.

Bandwidth
IoT devices often capture more data than they have bandwidth to transmit. This
means the vast majority of sensor data they capture is not even used—it’s just thrown
away! Imagine a smart sensor that monitors the vibration of an industrial machine
to determine if it is operating correctly. It might use a simple thresholding algorithm
to understand when the machine is vibrating too much, or not enough, and then
communicate this information via a low bandwidth radio connection.

This already sounds useful. But what if you could identify patterns in the data that
give you a clue that the machine might be about to fail? If we had a lot of bandwidth,
we could send the sensor data up to the cloud and do some kind of analysis to
understand whether a failure is imminent.

In many cases, though, there isn’t enough bandwidth or energy budget available to
send a constant stream of data to the cloud. That means that we’ll be forced to discard
most of our sensor data, even though it contains useful signals.

14 | Chapter 1: A Brief Introduction to Edge AI

https://oreil.ly/UY-DG
https://oreil.ly/UY-DG

Bandwidth limitations are very common. It’s not just about available connectivity—
it’s also about power. Networked communication is often the most energy-intensive
task an embedded system can perform, meaning that battery life is often the limiting
function. Some machine learning models can be quite compute intensive, but they
tend to still use less energy than transmitting a signal.

This is where edge AI comes in. What if we could run the data analysis on the IoT
device itself, without having to upload the data? In that case, if the analysis showed
that the machine was about to fail, we could send a notification using our limited
bandwidth. This is much more feasible than trying to stream all of the data.

Of course, it’s also quite common for devices to have no network connection at all! In
this case, edge AI enables a whole galaxy of use cases that were previously impossible.
We’ll hear more about this later.

Latency
Transmitting data takes time. Even if you have a lot of available bandwidth it can take
tens or hundreds of milliseconds for a round-trip from a device to an internet server.
In some cases, latency can be measured in minutes, hours, or days—think satellite
communications, or store-and-forward messaging.

Some applications demand a faster response. For example, it might be impractical for
a moving vehicle to be controlled by a remote server. Controlling a vehicle as it navi‐
gates an environment requires constant feedback between steering adjustments and
the vehicle’s position. Under significant latency, steering becomes a major challenge!

Edge AI solves this problem by removing the round-trip time altogether. A great
example of this is a self-driving car. The car’s AI systems run on onboard computers.
This allows it to react nearly instantly to changing conditions, like the driver in front
slamming on their brakes.

One of the most compelling examples of edge AI as a weapon against latency is in
robotic space exploration. Mars is so distant from Earth that it takes minutes for a
radio transmission to reach it at the speed of light. Even worse, direct communication
is often impossible due to the arrangement of the planets. This makes controlling
a Mars rover very hard. NASA solved this problem by using edge AI—their rovers
use sophisticated artificial intelligence systems to plan their tasks, navigate their
environments, and search for life on the surface of another world. If you have some
spare time, you can even help future Mars rovers navigate by labeling data to improve
their algorithms!

Economics
Connectivity costs a lot of money. Connected products are more expensive to use,
and the infrastructure they rely on costs their manufacturers money. The more

Why Do We Need Edge AI? | 15

https://oreil.ly/iQr8t
https://oreil.ly/RATTg

7 Not all edge AI applications are immune to this since it’s often necessary to monitor devices and push updates
to algorithms. That said, there are certainly many cases where edge AI can reduce the burden of maintenance.

bandwidth required, the steeper the cost. Things get especially bad for devices
deployed on remote locations that require long-range connectivity via satellite.

By processing data on-device, edge AI systems reduce or avoid the costs of transmit‐
ting data over a network and processing it in the cloud. This can unlock a lot of use
cases that would have previously been out of reach.

In some cases, the only “connectivity” that works is sending out a human being to
perform some manual task. For example, it’s common for conservation researchers to
use camera traps to monitor wildlife in remote locations. These devices take photos
when they detect motion and store them to an SD card. It’s too expensive to upload
every photo via satellite internet, so researchers have to travel out to their camera
traps to collect the images and clear the storage.

Because traditional camera traps are motion activated, they take a lot of unnecessary
photos—they might be triggered by branches moving in the wind, hikers walking
past, and creatures the researchers aren’t interested in. But some teams are now using
edge AI to identify only the animals they care about, so they can discard the other
images. This means they don’t have to fly out to the middle of nowhere to change an
SD card quite so often.

In other cases, the cost of connectivity might not be a concern. However, for products
that depend on server-side AI, the cost of maintaining server-side infrastructure can
complicate your business model. If you have to support a fleet of devices that need to
“phone home” to make decisions, you may be forced into a subscription model. You’ll
also have to commit to maintaining servers for a long period of time—at the risk of
your customers finding themselves with “bricked” devices if you decide to pull the
plug.7

Don’t underestimate the impact of economics. By reducing the cost of long-term sup‐
port, edge AI enables a vast number of use cases that would otherwise be infeasible.

Reliability
Systems controlled by on-device AI are potentially more reliable than those that
depend on a connection to the cloud. When you add wireless connectivity to a
device, you’re adding a vast, overwhelmingly complex web of dependencies, from
link-layer communications technologies to the internet servers that may run your
application.

Many pieces of this puzzle are outside of your control, so even if you make all
the right decisions you will still be exposed to the reliability risk associated with
technologies that make up your distributed computing stack.

16 | Chapter 1: A Brief Introduction to Edge AI

8 Even in this innocuous example, a malicious person accessing your thermostat data could use it to recognize
when you’re on vacation so they can break into your house.

9 This exact scenario unfolded in 2022 with the Ring home security system, which was found to be vulnerable
to an attack (“Amazon’s Ring Quietly Fixed Security Flaw That Put Users’ Camera Recordings at Risk of
Exposure”, TechCrunch, 2022).

For some applications, this might be tolerable. If you’re building a smart speaker that
responds to voice commands, your users might understand if it stops recognizing
their commands when their home internet connection goes down. That said, it can
still be a frustrating experience!

But in other cases, safety is paramount. Imagine an AI-based system that monitors an
industrial machine to make sure that it is being operated within safe parameters. If it
stops working when the internet goes down, it could endanger human lives. It would
be much safer if the AI is based entirely on-device, so it still operates in the event of a
connectivity problem.

Reliability is often a compromise, and the required level of reliability varies depend‐
ing on use case. Edge AI can be a powerful tool in improving the reliability of your
products. While AI is inherently complex, it represents a different type of complexity
than global connectivity, and its risk is easier to manage in many situations.

Privacy
Over the past few years, many people have begrudgingly resigned themselves to
a trade-off between convenience and privacy. The theory is that if we want our
technology products to be smarter and more helpful, we have to give up our data.
Because smart products traditionally make decisions on remote servers, they very
often end up sending streams of sensor data to the cloud.

This may be fine for some applications—for example, we might not worry that
an IoT thermostat is reporting temperature data to a remote server.8 But for other
applications, privacy is a huge concern. For example, many people would hesitate
to install an internet-connected security camera inside their home. It might provide
some reassuring security, but the trade-off—that a live video and audio feed of their
most private spaces is being broadcast to the internet—does not seem worth it. Even
if the camera’s manufacturer is entirely trustworthy, there’s always a chance of the data
being exposed through security vulnerabilities.9

Edge AI provides an alternative. Rather than streaming live video and audio to a
remote server, a security camera could use some onboard intelligence to identify that
an intruder is present when the owners are out at work. It could then alert the owners
in an appropriate way. When data is processed on an embedded system and is never
transmitted to the cloud, user privacy is protected and there is less chance of abuse.

Why Do We Need Edge AI? | 17

https://oreil.ly/Mf2LH
https://oreil.ly/Mf2LH

The ability of edge AI to enable privacy unlocks a huge number of exciting use cases.
It’s an especially important factor for applications in security, industry, childcare,
education, and healthcare. In fact, since some of these fields involve tight regulations
(or customer expectations) around data security, the product with the best privacy is
one that avoids collecting data altogether.

Using BLERP
As we’ll start to see in Chapter 2, BLERP can be a handy tool for understanding
whether a particular problem is well suited for edge AI. There doesn’t have to be
a strong argument for every word of the acronym: even meeting just one or two
criteria, if compelling enough, can give merit to a use case.

Edge AI for Good
The unique benefits of edge AI provide a new set of tools that can be applied to some
of our world’s biggest problems. Technologists in areas like conservation, healthcare,
and education are already using edge AI to make a big impact. Here are just a few
examples we’re personally excited about:

• Smart Parks is using collars running machine learning models to better under‐•
stand elephant behavior in wildlife parks around the world.

• Izoelektro’s RAM-1 helps prevent forest fires caused by power transmission hard‐•
ware by using embedded machine learning to detect upcoming faults.

• Researchers like Dr. Mohammed Zubair Shamim from King Khalid University•
in Saudi Arabia are training models that can screen patients for life-threatening
medical conditions such as oral cancer using low-cost devices.

• Students across the world are developing solutions for their local industries.•
João Vitor Yukio Bordin Yamashita, from UNIFEI in Brazil, created a system for
identifying diseases that affect coffee plants using embedded hardware.

The properties of edge AI make it especially well-suited for application to global
problems. Since reliable connectivity is expensive and not universally available, many
current generation smart technologies only benefit people living in industrialized,
wealthy, and well-connected regions. By removing the need for a reliable internet
connection, edge AI increases access to technologies that can benefit people and
the planet.

When machine learning is part of the mix, edge AI generally involves small models—
which are often quick and cheap to train. Since there’s also no need to maintain
expensive backend server infrastructure, edge AI makes it possible for developers
with limited resources to build cutting-edge solutions for the local markets that they
know better than anyone. To learn more about these opportunities, we recommend

18 | Chapter 1: A Brief Introduction to Edge AI

https://www.smartparks.org
https://oreil.ly/nyVIm
https://oreil.ly/hR-US
https://oreil.ly/ktZq_
https://oreil.ly/ktZq_
https://oreil.ly/gSv-J

watching “TinyML and the Developing World”, an excellent talk given by Pete War‐
den at the TinyML Kenya meetup.

As we saw in “Privacy” on page 17, edge AI also creates an opportunity to improve
privacy for users. In our networked world, many companies treat user data as a
valuable resource to be extracted and mined. Consumers and business owners are
often required to barter away their privacy in order to use AI products, putting their
data in the hands of unknown third parties.

With edge AI, data does not need to leave the device. This enables a more trusting
relationship between user and product, giving users ownership of their own data.
This is especially important for products designed to serve vulnerable people, who
may feel skeptical of services that seem to be harvesting their data.

TinyML for Developing Countries
If you’re interested in the global benefits of edge AI, the TinyML for Developing
Countries (TinyML4D) initiative is building a network of researchers and practition‐
ers who are focused on solving developing world challenges using edge AI.

As we’ll see in later sections, there are many potential pitfalls that must be navigated
in order to build ethical AI systems. That said, the technology provides a tremendous
opportunity to make the world a better place.

If you’re thinking about using edge AI to solve problems for
your local community, the authors would love to hear from you.
We’ve provided support for a number of impactful projects and
would love to identify more. Send an email to the authors at
hello@edgeaibook.com.

Key Di!erences Between Edge AI and Regular AI
Edge AI is a subset of regular AI, so a lot of the same principles apply. That said, there
are some special things to consider when thinking about artificial intelligence on edge
devices. Here are our top points.

Training on the edge is rare
A lot of AI applications are powered by machine learning. Most of the time, machine
learning involves training a model to make predictions based on a set of labeled
data. Once the model has been trained, it can be used for inference: making new
predictions on data it has not seen before.

Why Do We Need Edge AI? | 19

https://oreil.ly/csz6p
https://oreil.ly/Bd2np
https://oreil.ly/Bd2np
mailto:hello@edgeaibook.com

When we talk about edge AI and machine learning, we are usually talking about
inference. Training models requires a lot more computation and memory than infer‐
ence does, and it often requires a labeled dataset. All of these things are hard to
come by on the edge, where devices are resource-constrained and data is raw and
unfiltered.

For this reason, the models used in edge AI are often trained before they are deployed
to devices, using relatively powerful compute and datasets that have been cleaned and
labeled—often by hand. It’s technically possible to train machine learning models on
the edge devices themselves, but it’s quite rare—mostly due to the lack of labeled data,
which is required for training and evaluation.

There are two subtypes of on-device training that are more widespread. One of these
is used commonly in tasks such as facial or fingerprint verification on mobile phones,
to map a set of biometrics to a particular user. The second is used in predictive
maintenance, where an on-device algorithm learns a machine’s “normal” state so that
it can act if the state becomes abnormal. There’ll be more detail on the topic of
on-device learning in “On-Device Training” on page 119.

The focus of edge AI is on sensor data
The exciting thing about edge devices is that they live close to where the data is
made. Often, edge devices are equipped with sensors that give them an immediate
connection to their environments. The goal of an edge AI deployment is to make
sense of this data, identifying patterns and using them to make decisions.

By its nature, sensor data tends to be big, noisy, and difficult to manage. It arrives
at a high frequency—potentially many thousands of times per second. An embedded
device running an edge AI application has a limited time frame in which to collect
this data, process it, feed it into some kind of AI algorithm, and act on the results.
This is a major challenge, especially given that most embedded devices are resource-
constrained and don’t have the RAM to store large amounts of data.

The need to tame raw sensor data makes digital signal processing a critical part
of most edge AI deployments. In any efficient and effective implementation, the
signal processing and AI components must be designed together as a single system,
balancing trade-offs between performance and accuracy.

A lot of traditional machine learning and data science tools are focused on tabular
data—things like company financials or consumer product reviews. In contrast, edge
AI tools are built to handle constant streams of sensor data. This means that a whole
different set of skills and techniques is required for building edge AI applications.

20 | Chapter 1: A Brief Introduction to Edge AI

ML models can get very small
Edge devices are often designed to limit cost and power consumption. This means
that, generally, they have much slower processors and smaller amounts of memory
than personal computers or web servers.

The constraints of the target devices mean that, when machine learning is used to
implement edge AI, the machine learning models must be quite small. On a midrange
microcontroller, there may only be a hundred kilobytes or so of ROM available to
store a model, and some devices have far smaller amounts. Since larger models take
more time to execute, the slow processors of devices can also push developers toward
deploying smaller models.

Making models smaller involves some trade-offs. To begin with, larger models have
more capacity to learn. When you make a model smaller, it starts to lose some of its
ability to represent its training dataset and may not be as accurate. Because of this,
developers creating embedded machine learning applications have to balance the size
of their model against the accuracy they require.

Various technologies exist for compressing models, reducing their size so that they fit
on smaller hardware and take less time to compute. These compression technologies
can be very useful, but they also impact models’ accuracy—sometimes in subtle
but risky ways. “Compression and optimization” on page 117 will talk about these
techniques in detail.

That said, not all applications require big, complex models. The ones that do tend to
be around things like image processing, since interpreting visual information involves
a lot of nuance. Often, for simpler data, a few kilobytes (or less) of model is all
you need.

Learning from feedback is limited
As we’ll see later, AI applications are built through a series of iterative feedback loops.
We do some work, measure how it performs, and then figure out what’s needed to
improve it.

For example, imagine we build a fitness monitor that can estimate your 10K running
time based on data collected from onboard sensors. To test whether it’s working well,
we can wait until you run an actual 10K and see whether the prediction was correct.
If it’s not, we can add your data to our training dataset and try to train a better model.

If we have a reliable internet connection, this shouldn’t be too hard—we can just
upload the data to our servers. But part of the magic of edge AI is that we can deploy
intelligence to devices that have limited connectivity. In this case, we might not have
the bandwidth to upload new training data. In many cases, we might not be able to
upload anything at all.

Why Do We Need Edge AI? | 21

This presents a big challenge for our application development workflow. How do we
make sure our system is performing well in the real world when we have limited
access to it? And how can we improve our system when it’s so difficult to collect more
data? This is a core topic of edge AI development and something we’ll be covering
heavily throughout this book.

Compute is diverse and heterogeneous
The majority of server-side AI applications run on plain old x86 processors, with
some graphics processing units (GPUs) thrown in to help with any deep learning
inference. There’s a small amount of diversity thanks to Arm’s recent server CPUs,
and exotic deep learning accelerators such as Google’s TPUs (tensor processing
units), but most workloads run on fairly ordinary hardware.

In contrast, the embedded world includes a dizzying array of device types:

• Microcontrollers, including tiny 8-bit chips and fancy 32-bit processors•
• System-on-chip (SoC) devices running embedded Linux•
• General-purpose accelerators based on GPU technology•
• Field programmable gate arrays (FPGAs)•
• Fixed architecture accelerators that run a single model architecture blazing fast•

Each category includes countless devices from many different manufacturers, each
with a unique set of build tools, programming environments, and interface options. It
can be quite overwhelming.

The diversity of hardware means there are likely to be multiple suitable systems for
any given use case. The hard part is choosing one! We’ll cover this challenge over the
course of the book.

“Good enough” is often the goal
With traditional AI, the goal is often to get the best possible performance—no
matter the cost. Production deep learning models used in server-side applications can
potentially be gigabytes in size, and they lean on powerful GPU compute to be able to
run in a timely manner. When compute is not an obstacle, the most accurate model is
often the best choice.

The benefits of edge AI come with some serious constraints. Edge devices have less
capable compute, and there are often tricky choices involved with trading off between
on-device performance and accuracy.

This is certainly a challenge—but it’s not a barrier. There are huge benefits to running
AI at the edge, and for a vast number of use cases they easily outweigh the penalty

22 | Chapter 1: A Brief Introduction to Edge AI

of a little reduced accuracy. Even a small amount of on-device intelligence can be
infinitely better than none at all.

The goal is to build applications that make the most of this “good enough” perfor‐
mance—an approach described elegantly by Alasdair Allan as Capable Computing.
The key to doing this successfully is using tools that help us understand the perfor‐
mance of our applications in the real world, once any performance penalties have
been factored in. We’ll be covering this topic at length.

Tools and best practices are still evolving
As a brand-new technology that has only begun to reach mass adoption, edge AI still
depends on tools and approaches that were developed for large-scale, server-side AI.
In fact, the majority of AI research is still focused on building large models on giant
datasets. This has a couple of implications.

First, as we’ll see in Chapter 5, we’ll often find ourselves using existing development
tools from the fields of data science and machine learning. On the positive side, this
means we can draw from a rich ecosystem of libraries and frameworks that is proven
to work well. However, few of the existing tools prioritize things that are important
on the edge—like small model sizes, computational efficiency, and the ability to train
on small amounts of data. We often have to do some extra work to make these the
focus.

Second, since edge AI research is fairly new we’re likely to see extremely rapid
evolution. As the field grows, and more researchers and engineers turn to focus on
it, new approaches for improving efficiency are emerging—along with best practices
and techniques for building effective applications. This promise of rapid change
makes edge AI a very exciting field to work in.

Summary
In this chapter, we’ve explored the terminology that defines edge AI, learned a handy
tool for reasoning about its benefits, explored how moving compute to the edge can
increase access to technology, and outlined the factors that make edge AI different
from traditional AI.

From the next chapter onward, we’ll be dealing with specifics. Get ready to learn
about the use cases, devices, and algorithms that power edge AI today.

Summary | 23

https://oreil.ly/W4gDl

CHAPTER 2

Edge AI in the Real World

We now have a basic understanding of what edge AI means and what makes it—in
theory—a useful set of technologies. In this coming chapter, we’ll see what that
theory looks like when it makes contact with the real world. We’ll start by examining
some actual products that are out in the field today. After that, we’ll explore the top
application areas for edge AI products. Finally, we’ll learn more about the ethical
considerations required to make any product a success.

Common Use Cases for Edge AI
As we learned in the previous chapter, edge AI is especially valuable for devices with
an abundance of sensor data but a lack of compute or connectivity. Luckily for us,
these conditions can be found nearly everywhere.

In modern cities, it can feel like we’re never very far from a power socket or a wireless
access point. But even when high bandwidth network connections and reliable power
are available, there are huge advantages to limiting the communications and power
consumption of devices. As we saw in “To Understand the Benefits of Edge AI, Just
BLERP” on page 14, the pursuit of desirable features such as portability, reliability,
privacy, and cost can drive product development toward devices that are designed to
minimize the use amount of connectivity and energy usage.

Despite our seemingly global internet, there are plenty of places on the planet that
are limited in connectivity or power. At the time of writing, 50% of the Earth’s land is
relatively untouched by human development. Only a small percentage of the planet’s
surface has cellular or wireless coverage, and billions of people do not have reliable
access to power.

25

https://oreil.ly/ASced
https://oreil.ly/ASced
https://oreil.ly/kly86
https://oreil.ly/kly86

But beyond the obviously remote regions, there are plenty of hidden corners in our
most built-up regions that fall into this category. In our modern industrial supply
chains, there are places where it’s impractical to provide hardwired DC power for
embedded devices—making efficient, battery-powered devices the perfect fit (see
Figure 2-1).

Figure 2-1. #ere are many places on our planet where battery power is required

At the same time, sensors are becoming cheaper, more sophisticated, and less power
hungry. Often, even simple embedded devices ship with highly capable sensors that
remain underutilized due to the challenges in getting the data off the system for
remote processing. For example, imagine a basic fitness wearable that uses an acceler‐
ometer to count steps. Even this simple device might be equipped with a sensitive
multiaxis accelerometer that has a very high sample rate, capable of recording the
most subtle movements. Unless the device’s software is equipped to interpret this
data, most of it will be thrown away: it would be too energy intensive to send the raw
data to another device for processing.

Green"eld and Brown"eld Projects
Conditions such as those discussed above produce nearly endless opportunities for
deploying edge AI. In practical terms, it can be helpful to group these opportunities
into two categories: green"eld and brown"eld. These terms are borrowed from urban
planning. A greenfield project is one that takes place on a site that has yet to be
developed and is still a grassy, green field. A brownfield project takes place on a site
that has already been developed and may have some existing legacy infrastructure.

In the edge AI world, greenfield projects are ones where the hardware and software
are designed together from the ground up. Since there’s no existing hardware, green‐
field projects can make use of the latest and greatest innovations in compute and
sensing—which we’ll learn more about later in this chapter. The developers have

26 | Chapter 2: Edge AI in the Real World

more freedom to design the ideal solution for the use case they are trying to target.
For instance, modern cellphones are designed to include dedicated low-power digital
signal processing hardware so that they can continually listen out for a wake word
(such as “OK, Google” or “Hey, Siri”) without draining the battery. The hardware is
chosen with the specific wake word–detection algorithm in mind.

In contrast, brownfield edge AI projects begin with existing hardware that was origi‐
nally designed for a different purpose. Developers must work within the constraints
of the existing hardware to bring AI capabilities to a product. This reduces develo‐
pers’ freedom, but it avoids the major costs and risks associated with designing new
hardware. For example, a developer could add wake word detection to a Bluetooth
audio headset that is already on the market by making use of spare cycles in the
device’s existing embedded processor. This new functionality could even be added to
existing devices with a firmware update.

Greenfield projects are exciting because they allow us to push the limits of what is
possible by pairing the latest edge AI hardware and algorithms. On the other hand,
brownfield projects allow us to bring new capabilities to existing hardware, delighting
customers and making the most of existing designs.

Real-World Products
The best way to understand a technology is to see how it’s applied in the real world.
We’re still in the early days of edge AI, but it’s already being used across a huge range
of applications and industries. Here are three brief overviews of real-world systems
that have been developed using edge AI. Perhaps your own work will be featured in a
future edition of this book!

Preventing forest "res using power line fault detection
Power lines transmit electricity across vast swathes of wilderness, including Europe’s
ancient forests. Equipment failure can potentially ignite vegetation and cause wild‐
fires. With thousands of miles of towers and power lines, often in very remote areas,
electrical equipment can be difficult to monitor.

Izoelektro’s RAM-1 device uses edge AI to help solve this problem (Figure 2-2). A
package of sensors monitors conditions at each electrical pylon, including tempera‐
ture, inclination, and voltage, and uses a deep learning classification model (Chap‐
ter 4) to identify when a fault may be developing. Technicians can visit the pylon and
make a repair before there is any danger of fire. The device has a rugged construction
designed to withstand extreme weather conditions over many years of service.

Common Use Cases for Edge AI | 27

https://www.ram-center.com

Figure 2-2. Izoelektro’s RAM-1 device (Credit: Izoelektro)

There are two main factors that make this a perfect application for edge AI. The first
is the lack of connectivity in wilderness locations. It would be prohibitively expensive
to transmit raw sensor data from thousands of remotely located pylons in real time.
Instead, the elegant solution is to interpret the sensor data at the source and transmit
only when a fault is predicted—a maximum of around 250 kilobytes per month.
The device is able to understand which data is crucial enough to require immediate
attention, sending less important information in periodic batch transmissions.

This selective communication helps with the second, slightly unintuitive factor.
Although the RAM-1 is mounted on an electricity pylon, it actually makes use of
battery power. This ensures it keeps working even if there’s a fault in the power lines,
and it reduces the cost and complexity of installation. Since radio transmission uses a
lot of energy, the RAM-1’s ability to avoid unnecessary transmission helps it preserve
battery life. In fact, with the help of edge AI, its battery can last for twenty years.

Here’s how the RAM-1 fits the BLERP model:

Bandwidth
Connectivity is limited in remote locations where RAM-1 is deployed.

Latency
It’s critical to identify failures as soon as they happen, as opposed to waiting for a
periodic data transmission.

Economics
Avoiding unnecessary communication saves money and means the device can
run on battery power, which reduces the cost of installation.

Reliability
The ability to run on battery power improves reliability.

28 | Chapter 2: Edge AI in the Real World

https://www.ram-center.com

1 We’ll learn about these soon, in “Conditionals and heuristics” on page 101.

Privacy
Not a major consideration for this use case.

Protecting "rst responders with intelligent wearables
The nature of their work means that firefighters are often exposed to high tempera‐
tures, and the extreme heat conditions can have a major impact on their long-term
health. In fact, according to FEMA the leading cause of firefighter line-of-duty deaths
is sudden cardiac events.

SlateSafety’s BioTrac Band is a wearable device designed for workers, like firefighters,
who are exposed to extreme conditions (Figure 2-3). It provides an early warning
system that can help alert individuals and teams to conditions that may result in
heat strain and overexertion. The BioTrac Band uses an embedded machine learning
model alongside heuristic algorithms1 to analyze data from multiple sensors—includ‐
ing signals from the wearer’s body—and predict when an injury is about to happen.
This intelligence made the device one of Time magazine’s 100 best inventions of 2021.

Figure 2-3. SlateSafety’s BioTrac Band (Credit: SlateSafety)

The extreme environments that the BioTrac Band is deployed in make it a fantastic
use case for edge AI. By analyzing data on-device, the band can continue to function
and warn its wearer even when connectivity becomes limited or unavailable during
the course of an emergency. In addition, the ability to interpret data on-device means
that unnecessary transmission of data can be avoided—which saves energy and
improves battery life, while allowing the size and weight of the device to be kept to a
minimum. It also saves costs, which means the device can be more widely adopted.

Common Use Cases for Edge AI | 29

https://oreil.ly/lG6Hk
https://oreil.ly/lG6Hk
https://oreil.ly/mAWs1
https://oreil.ly/cUy-b
https://slatesafety.com

Here’s how the BioTrac Band fits the BLERP model:

Bandwidth
Connectivity is limited in extreme environments where firefighters work.

Latency
Health issues are time-critical and must be identified immediately.

Economics
Streaming raw data from sensors would require expensive high bandwidth
connections.

Reliability
The device can continue to warn firefighters of potential risks even if connectiv‐
ity drops, and it can function for a long time on a small battery.

Privacy
Raw biosignal data can be kept on-device, with only critical information being
transmitted.

Understanding elephant behavior with smart collars
With increased pressure on their natural habitat, wild elephants are increasingly
coming into contact with human beings. These interactions often end badly for the
animals, with poaching or conflict with farmers and other people frequently leading
to injury and death. To reduce the likelihood of these events, conservation workers
and scientists are trying to learn more about elephant behavior and the types of
conditions that lead to dangerous encounters.

ElephantEdge is an open source project to create a tracking collar designed to help
researchers understand elephant behavior (Figure 2-4). The collar, fit around the
neck of an elephant, can provide insight into the animal’s location, health, and
activities using a combination of embedded sensors and machine learning models.
This data can be used for scientific study—and it can also be used to alert humans to
the presence of animals so that conflict can be avoided.

Since the device is attached to a wild elephant, replacing the battery is a difficult
task! Edge AI technology helps by minimizing the amount of energy consumed by
the device. Instead of transmitting large amounts of raw sensor data, the machine
learning–equipped collar is able to transmit high-level information about the animal’s
activities—for example, whether it is walking, eating, drinking, or engaging in other
behaviors. The models that allow it to do this were prototyped by a community of
citizen scientists working with public datasets.

30 | Chapter 2: Edge AI in the Real World

https://oreil.ly/Hehxr
https://oreil.ly/OHig1

2 LoRa is a trademark derived from the phrase “long range,” since it is designed for long-range, low-power
communications.

Figure 2-4. #e OpenCollar Edge tracking collar being "tted to a sedated elephant
(Credit: IRNAS)

These low bandwidth requirements mean the collar can take advantage of an
extremely low-power wireless communication technology named LoRa.2 The collar
is able to communicate with LoRa-equipped satellites that pass over once per day,
sending a summary of the animal’s activities since the last transmission. This means
that the system can work reliably even in places with no traditional connectivity, but
the battery can last for an estimated five years.

Here’s how the OpenCollar Edge fits the BLERP model:

Bandwidth
Connectivity is limited in elephant habitats; on-device analysis enables use of
low-energy wireless technologies.

Latency
Even though the device only transmits once per day, this is very frequent com‐
pared to traditional tracking collars that require manual downloading.

Economics
The device saves money by replacing traditional methods for monitoring ele‐
phants, which are labor intensive.

Reliability
Infrequent transmission means the battery can last for years, and makes satellite
technology economically viable, increasing range.

Common Use Cases for Edge AI | 31

https://www.irnas.eu

Privacy
Tracking of elephants directly is less intrusive to local people than setting up
cameras to monitor animal activity, which is another proposed solution.

These three use cases represent a tiny sample of what is possible. In the next section,
we’ll talk through some general high-level categories of applications.

Types of Applications
There are opportunities to deploy edge AI across every part of our modern world,
from heavy industry to healthcare, agriculture to art. The possibilities are nearly
endless! To make things easier to discuss, the roles that edge AI technologies play
within these applications can be grouped into a few high-level categories:

• Keeping track of objects•
• Understanding and controlling systems•
• Understanding people and living things•
• Generating and transforming signals•

Let’s walk through each of these categories and understand where edge AI fits.

Keeping Track of Objects
From vast container ships to individual grains of rice, our civilization depends on
the movement of objects from one place to another. This might occur in the con‐
trolled conditions of a warehouse, where items are moved carefully from storage to
shipment. It may also occur under the most extreme conditions, like the motion of
weather systems across the face of the planet.

Tracking and interpreting the state of objects, both man-made and natural, is a key
application area for edge AI. Intelligent sensors can help encode the state of the
physical world in a form computers can understand, allowing us to do a better job of
coordinating our activity.

Table 2-1 discusses edge AI use cases that involve keeping track of objects.

Table 2-1. Edge AI use cases for keeping track of objects
Use case Key sensors
Monitoring shipments using smart packaging to detect damage during transit Accelerometer, vibration,

GPS, temperature, humidity
Counting products on store shelves using embedded cameras, so items can be restocked
before they run out

Vision

Analyzing the movement of plastic waste in the ocean so it can be cleaned up Vision

32 | Chapter 2: Edge AI in the Real World

Use case Key sensors
Identifying and tracking obstacles at sea to help ships avoid collisions Radar
Locating buried natural resources using geophysical sensors Electromagnetic, acoustic

Deep Dive: Monitoring Shipments Using Smart Packaging
It’s common for manufactured products to travel thousands of miles on their way to a
customer—and they don’t always make it in one piece. Damage during shipping costs
businesses money, but when a shipment arrives damaged after a long voyage, it isn’t
always easy to figure out what happened.

With edge AI, a logistics company could attach a device to high-value shipments that
can recognize when an expensive item is at risk of damage. For example, if equipped
with an accelerometer, the device could use a machine learning model to distinguish
between normal bumps and jolts and specific types of rough handling that might lead
to damage. Any rough handling event could be logged, along with a timestamp and a
GPS location.

The logs could be uploaded periodically, whenever the device is able to get a wireless
connection. Upon arrival, if there is any damage, the company could analyze the logs
to discover the time and place where the damage happened—allowing them to find
and fix the cause of the issue.

What makes this a good use case for edge AI? Let’s think about it in terms of BLERP:

Bandwidth
To detect sudden bumps, the accelerometer data would have to be quite high fre‐
quency. This makes it difficult to transmit from low-power wireless radios, which
are generally low bandwidth. By processing data on-device, we can massively
lower the bandwidth requirements.

Latency
Not a major consideration for this use case.

Economics
It’s expensive to transmit data wirelessly, especially since the device could be
anywhere in the world. Using edge AI helps conserve data and lower costs.

Reliability
Shipments in transit are unlikely to have reliable connectivity, so it’s important
that the device can keep logging even when out of range. If we don’t have to store
raw data, we can log all the interesting events in a small amount of memory.

Privacy
Not a major consideration for this use case.

Types of Applications | 33

Key bene"ts for object tracking
Object tracking tends to make use of the connectivity and cost-related benefits of
edge AI. The world has many objects, and they’re not always in convenient places.
Cheap edge AI sensors making use of low-cost, opportunistic connectivity can pro‐
vide high-resolution visibility into gaps in the supply chain that would otherwise be
too expensive to monitor.

Of course, the exact benefits of deploying edge AI vary from project to project. For
example, a system using cameras to monitor stock on store shelves might use edge
AI for privacy. If internet-connected cameras were used to monitor store shelves,
employees might feel like they are under constant scrutiny by HQ. But a stock
tracking system that works offline, solely for the benefit of the store’s team, could be a
welcome aid.

Understanding and Controlling Systems
Our modern world is built on millions of complex, interconnected systems—every‐
thing from production lines to transportation networks, climate control to smart
home appliances. The well-being of our economies is tied intimately to these systems.
A breakdown in production can cost vast amounts of time and money and improve‐
ments in efficiency can lead to huge savings in costs, labor, and emissions.

The monitoring, control, and maintenance of complex systems is a vast opportunity
for edge AI. The ability to make rapid, reliable decisions at the edge can improve the
responsiveness and resilience of our systems, and fine-grained insights into system
state can help us better plan for the future.

Some edge AI use cases that involve understanding and controlling systems can be
found in Table 2-2.

Table 2-2. Edge AI use cases for understanding and controlling systems
Use case Key sensors
Monitoring an oil rig for signs that it needs maintenance, avoiding downtime and
reducing leaks and spillage

Accelerometer, vibration, load,
temperature, audio, vision, and more

Autonomously driving a combine harvester, helping a farmer quickly harvest
their crops

Vision, GPS

Understanding and shaping tra!c "ow on a busy highway, using variable speed
limits to keep cars moving

Vision, magnetometer

Directing a mechanical tool using sensor feedback Accelerometer, vibration, load
Identifying faulty items on a production line using computer vision, improving
quality control and quickly recognizing issues

Vision

Cleaning a carpet using a robot vacuum, saving time for the owner of the home Vision, proximity, touch, currenta

Fetching items in a warehouse using robots, reducing labor costs and workplace
health risks

Vision, proximity, touch, light

34 | Chapter 2: Edge AI in the Real World

Use case Key sensors
Detecting intrusions in computer networks using tra!c analysis, automatically
responding to security threats

Network logsb

Estimating vehicle tire wear based on vibration during motion Accelerometer
a Analysis of motor current can be used to identify when a robot’s wheels or cleaning tools are stuck.
b Edge AI doesn’t always require sensor data: any locally available data streams can be used as input to algorithms.

This is a truly enormous category of applications, including many of the things we
associate with our vision of “the future”: self-driving vehicles, industrial robots, and
smart factories. What they have in common is the use of edge AI to monitor the state
of a complex system and to provide feedback and control when change is required.

Key bene"ts for understanding and controlling systems
A broad category, the automated monitoring and control of systems makes use of
most of the benefits of edge AI. Economics and reliability are particularly important
to many business use cases, and the benefits of low-bandwidth, low-latency solutions
provide further justification where otherwise a server-side system might be used.

Deep Dive: Predictive Maintenance at an Oil Rig
If a piece of industrial equipment suddenly fails, the resulting downtime and disrup‐
tion to processes can cost tremendous amounts of money. In some cases, it may
also pose a threat to the health of human beings and the environment. Predictive
maintenance is the art of identifying when a system is starting to fail—so that steps
can be taken before it does.

An oil well is an incredibly complicated piece of machinery that operates under
extreme conditions. Due to its precarious position in the middle of the ocean, faults
can result in more than just costly downtime—the lives of the rig’s crew are at stake,
and oil spills can contaminate the ocean environment.

Using edge AI, sensor-equipped devices can be deployed to monitor key components
of an oil rig, measuring factors such as vibration, temperature, and noise. They can
learn the “normal” state of each part of the system, building a model of what a nomi‐
nal operation looks like. If conditions start to deviate, they can alert a maintenance
team to investigate further. Particularly sophisticated predictive maintenance systems
might even have some control over the equipment, automatically halting operation if
a dangerous situation is detected.

To understand why this is a good fit for edge AI, we can use the BLERP model:

Bandwidth
Most oil rigs rely on satellites for connectivity, making it challenging to stream
large amounts of sensor data from thousands of rig components into the cloud.
Further, there are places within a drilling operation that have very limited

Types of Applications | 35

connectivity—for example, a drilling bit might be miles beneath the ocean floor!
On-device predictive maintenance can turn a vast stream of noisy data into a
lightweight sequence of events that are easy to transmit.

Latency
It’s expensive to pay expert human beings to travel to an oil rig and inspect equip‐
ment. This means that inspection happens periodically, limiting how quickly a
problem can be identified. With constant monitoring from an edge AI system,
issues can be identified and addressed as soon as they present.

Economics
Predictive maintenance can save vast amounts of money that might otherwise be
lost to downtime. In addition, monitoring via AI-equipped smart sensors is a lot
cheaper than paying humans to perform the dangerous work of inspecting heavy
machinery.

Reliability
In the extreme off-shore environment, you can’t always depend on reliable trans‐
portation or communications. Using edge AI, insight into equipment health can
continue even when usual operations are disrupted.

Privacy
Not a major consideration for this use case.

Understanding People and Living Things
The biological world is complex, messy, and can change quickly. There’s huge value
in being able to understand and react to it in real time. This category includes
human-oriented technologies, like fitness tracking watches and educational toys, as
well as systems for monitoring nature, agriculture, and the microscopic world.

These applications help bridge the gap between biology and technology, allowing our
rigid computer systems to interface with the dynamic and flexible world of life on
Earth. As our understanding of biology improves, this field will continue to grow.

Table 2-3 shows examples of edge AI use cases that help people and computers
understand one another.

Table 2-3. Edge AI use cases involving people
Use case Key sensors
Alerting workers in a dangerous environment when they are missing protective equipment Vision
Understanding human gestures to control a video game Vision, accelerometer, radar
Identifying when an intensive care patient’s health is deteriorating and notifying a
medical attendant

Biosignals, medical
equipment

36 | Chapter 2: Edge AI in the Real World

Use case Key sensors
Recognizing when a thief has broken into a home and alerting the authorities Vision, audio, accelerometer,

magnetic sensors
Categorizing physical activities using sensors in a smart watch Accelerometer, GPS, heart

rate
Recognizing a user’s voice commands and controlling an appliance Audio
Counting the number of people who are waiting at a bus stop Vision
Warning a driver when they are falling asleep at the wheel of a car Vision

Our world is filled with plants, animals, and other living things. Table 2-4 shows
examples of edge AI use cases that help us make sense of them.

Table 2-4. Edge AI use cases involving living things
Use case Key sensors
Informing researchers when wildlife of interest is spotted by a remote trail camera Vision, audio
Diagnosing crop diseases in a remote rural location with no cellphone coverage Vision, volatile organic compound
Recognizing sounds made by marine mammals to track their movements and
understand their behavior

Acoustic

Warning villagers of an approaching elephant so they can avoid human-animal con"ict Thermal imaging, vision
Categorizing farm animal behavior using a smart collar to understand health Accelerometer
Cooking food to perfection by monitoring and controlling a sensor-equipped
kitchen appliance

Vision, temperature, volatile
organic compounda

a Volatile organic compound (VOC) sensors can detect various types of gases.

Key bene"ts for understanding people and living things
Another large area, applications involving people and living things, makes use of
every aspect of the BLERP model. That said, this is a category where privacy can be
especially important. There are many applications that are technically feasible using
server-side AI, but only become socially acceptable when done on-device.

The most widespread example of this is digital personal assistants, such as Apple’s Siri
or Google’s Google Assistant. As discussed earlier, personal assistants work by using
on-device models to constantly listen for wake words. Only after the wake word is
detected is any audio streamed to the cloud. Without the on-device component, the
assistant would have to constantly stream audio to the service provider. This would
be incompatible with most people’s expectations around privacy.

By moving functionality onto devices, and avoiding the transmission of data, we
unlock massive possibilities—especially in vision, which until recently required large
models that could only be run in the cloud.

Types of Applications | 37

Deep Dive: Spotting Rare Wildlife with Trail Cameras
A trail camera, or camera trap, is a special type of camera designed for monitoring
wildlife. It has a tough, weatherproof housing, a high-capacity battery, and a motion
sensor. Installed with a view of a trail, it automatically snaps photos whenever it
detects motion.

Researchers who are monitoring specific species install camera traps in remote loca‐
tions and leave them for months at a time. When they return, they download the
photos from the camera and use them to better understand their target species; for
example, they may try to estimate how many individuals exist.

There are some significant problems with camera traps that cost a lot of time
and money:

• Most of the photos captured do not feature the target species. Instead, the•
capture was triggered by nontarget species or by random motion in the field
of view.

• Due to the high number of false positives, it would not be helpful to send notifi‐•
cations of captures via a network connection. Instead, researchers must travel out
to the remote location to collect the saved photos. This is extremely expensive
and can result in missing data if the memory card gets full, or unnecessary trips if
nothing interesting has been photographed.

• Researchers must trawl through thousands of useless photographs to find the few•
that matter.

Using edge AI, camera traps can be equipped with deep-learning vision models
trained to identify target species and reject any images that do not contain them. This
means that researchers no longer have to worry about filling up memory cards with
useless images. Even better, it means that cameras can potentially be equipped with
low-power or cellular radio transmitters that allow them to report back on animal
sightings without anyone having to visit the field. This can massively reduce the cost
of a study and increase the amount of scientific work that can be done.

The BLERP model can tell us exactly why this is a great application for edge AI:

Bandwidth
Camera traps are often deployed in remote areas with low connectivity—perhaps
with expensive, low-bandwidth satellites as the only option. With edge AI, the
number of photos taken can be reduced enough to make it possible to transmit
them all.

Latency
Without edge AI, the latency involved with sending a researcher to collect photos
from camera traps could be measured in months! With edge AI and a low-power

38 | Chapter 2: Edge AI in the Real World

radio connection, it’s possible to analyze photos immediately and obtain useful
information without having to wait.

Economics
Avoiding trips out into the field saves large amounts of money; so does avoiding
unnecessary use of expensive satellite radios.

Reliability
If useless photos can be discarded, the memory card will take longer to fill up.

Privacy
An edge AI camera can discard photos of humans on the trail, preserving the
privacy of other trail users (such as local people or hikers).

Transforming Signals
To a computer, our world is made up of signals: time series of sensor readings that
each describe a small fragment of a situation or environment. Our previous categories
of applications are mostly focused on interpreting these signals and responding to
them accordingly. Data from one or more sensors is assimilated, and a simple output
is constructed that either facilitates human interpretation or can be used as a control
signal for an automated system.

This final category is a little different. Sometimes, rather than converting a raw signal
into an instantaneous decision, we simply want to transform one signal into another
(Table 2-5). As discussed in “Digital Signal Processing” on page 12, digital signal
processing is an important part of embedded applications. In these use cases, which
go much further than the traditional DSP pipeline, it is the end goal rather than a
side effect.

Table 2-5. Edge AI use cases for transforming signals
Use case Signal type
Filtering background noise to improve call quality on a cell phone Audio
Removing noise from photographs captured with a smartphone camera Vision
Generating music to accompany a musician during practice Audio
Blurring the background of a video stream during a remote work meeting Vision
Generating realistic human speech from text Audio
Translating one written language into another using a smartphone camera Vision, text
Upsampling low-resolution audio so that it sounds better to the human ear Audio
Compressing video using deep learning so that it can be transmitted via a low bandwidth connection Video
Creating a spoken representation of a visual scene for visually impaired people Audio
Transcribing a spoken conversation into text for convenience of note-taking Audio
Using data from cheap sensors to simulate the output of an expensive one Time series

Types of Applications | 39

Key bene"ts for transforming signals
Since digital signals are expressed over time, applications in this area tend to benefit
from the latency benefits of edge AI. Bandwidth is also particularly important, since
access to the original signal is required; transmitting the transformed signal often
requires the same amount of bandwidth, if not more.

Deep Dive: Blurring the Background During a Remote Work Meeting
With the growth of remote work and videoconferencing, employees have had to get
used to their previously private home spaces being broadcast to their coworkers. To
help maintain some privacy, many videoconferencing tools now support blurring the
background of a video stream while leaving the subject of the video intact.

These tools depend on a technique named segmentation, which uses deep learning
models to identify the pixels in a stream of video that belong to one category or
another. In this case, the model is trained to distinguish between a person and their
background scenery. The input is the raw stream of video from a camera. The output
is a stream of video with the same resolution but with the background pixels blurred
together, making it hard to see what is there.

To preserve privacy, it’s important that this technique uses edge AI—otherwise, the
unblurred video would be transmitted outside of the user’s home. Instead, the seg‐
mentation and blurring is performed on-device before the data is transmitted.

Here’s how this use case maps onto our BLERP model:

Bandwidth
The transformation works best if it happens on the high-resolution original
video stream rather than a compressed, low-resolution version that may contain
visual artifacts. It’s often not feasible to transmit high-resolution video, so the
transformation must be done on-device.

Latency
Performing the transformation on a remote server may add additional latency
versus directly sending the video stream to a peer. Performing it on-device
removes this potential extra step.

Economics
It’s cheaper to perform the required computation on the device sending video as
opposed to in the cloud, where the service provider would have to pay for it.

Reliability
With a cloud server as a middleman, the video streaming pipeline is more
complex and has a higher probability of outages. By processing on-device, the
pipeline is simpler and may be less likely to fail.

40 | Chapter 2: Edge AI in the Real World

Privacy
When the data is transformed on-device, the user can be guaranteed that nobody
will ever see the original video.

Another interesting application for transforming data is the concept of a virtual
sensor. In some situations, engineering or cost constraints may prevent you from
outfitting a device with all of the sensors you would like to. For example, perhaps
your design would benefit from a particularly accurate sensor—but that sensor is too
expensive for production use.

To get around this problem, it may be possible to create a virtual sensor—an artificial
stream of data that provides signals that are almost as good as the real thing. To do
this, an edge AI algorithm might process other signals (for example, it could combine
readings from several cheaper sensors) and attempt to reconstruct the signal of the
desired sensor based on the information they contain.

For example, in monocular depth estimation a model is trained to estimate the
distance of objects from a simple image sensor. This would usually require a more
expensive solution, such as a stereoscopic camera or a laser-based distance sensor.

We’ve now explored the four high-level categories that most edge AI applications
can be grouped into. As edge AI technologies continue to evolve, we’ll see many
more potential use cases open up. But technological feasibility does not automatically
make something a good idea. In the next section, we’ll talk about the importance
of responsible design—and learn some of the pitfalls that can result in edge AI
applications that cause more harm than good.

Building Applications Responsibly
The first part of this chapter has covered some of the most interesting potential
applications for edge AI, and the next chapter will provide a framework for breaking
down problems and deciding whether they are a good fit for edge AI to solve.

But as we heard in “Responsible, Ethical, and Effective AI” on page xxi, it’s vital that
any project is analyzed at every step along the way to make sure that its design and
use are responsible. This isn’t some warm-and-fuzzy process where we pat ourselves
on the back for ticking some boxes and then continue with our work. Poorly designed
technology products can be life-destroying, career-ending disasters—for the end
users of the products, the businesses selling them, and the developers creating them.

An example of this is Uber’s self-driving car division. The rideshare company
launched an aggressive drive toward developing a self-driving car, hiring industry
luminaries, and investing billions of dollars. In its rush to test a system on real streets,
the company’s flawed safety procedures and ineffective software led to the tragic

Building Applications Responsibly | 41

https://oreil.ly/LMBbU
https://oreil.ly/UMkXa

3 The head of the division, Anthony Levandowski, was later sentenced to eighteen months in prison for theft of
intellectual property—suggesting that ethical issues were a systemic problem.

death of a pedestrian. This disaster resulted in the shutdown of Uber’s self-driving
program, layoffs of hundreds of employees, and the fire sale of the self-driving car
division to another business.3

Building a self-driving car, if done well, could result in safer roads and reduced
emissions. It seems like a noble mission. But the complex environment of edge AI
can lead to potential pitfalls that are challenging to navigate. When these risks are
factored in, a well-intentioned technology project can become a deadly minefield.

In Uber’s case, their self-driving car was subject to an incredibly common failure
mode of machine learning systems: it was incapable of understanding situations that
had not appeared in its training dataset. According to the National Transportation
Safety Board, Uber’s self-driving car lacked “the capability to classify an object as a
pedestrian unless that object was near a crosswalk”.

There are many factors that contribute to a catastrophic failure like this. On the part
of the developers, it shows incompetence and negligence to drive a self-driving car on
public roads when it was not tested for its ability to handle even the most common
operating conditions. In Uber’s case, this led directly to the death of a human being
and the failure of a company division. We may assume that the team behind Uber’s
self-driving software were intelligent, capable people—they were recruited as the best
in the business. So how can it be that capable people miss the obvious when building
and deploying technology?

The unfortunate truth is that building technology well is hard, and it’s difficult to
solve complex problems with technologies that—by nature—can only reflect partial
considerations. Beyond the fundamental technical challenges, it’s your responsibility
as a professional to know the limits of your technology, to scrutinize your processes,
ruthlessly evaluate your work, and be willing to shut down a project if it doesn’t
seem to be going the right way. A product that unintentionally harms people is a bad
product, no matter how brilliant the team that designed it.

In a business setting, you may be fighting against organizational inertia that is more
concerned with shipping something than making sure it is safe. But you should
always remember that, at the end of the day, your livelihood, reputation, and freedom
are on the line if you neglect your professional responsibilities. Even worse, you could
build a product that ruins the lives of others and regret it for the rest of your days.

42 | Chapter 2: Edge AI in the Real World

https://oreil.ly/A-URg
https://oreil.ly/A-URg

Responsible Design and AI Ethics
Responsible design is critical to building e$ective products. To make sure it receives the
introduction it deserves, the authors invited Wiebke (Toussaint) Hutiri, PhD researcher
in the Cyber Physical Intelligence Lab at the Technical University of Del!, to write the
following section. Wiebke does interdisciplinary research at the intersection of applied
machine learning and edge computing, with a focus on designing trustworthy machine
learning systems for the Internet of #ings.
Harmful AI failures, as described earlier in this chapter, have made AI ethics an
important consideration for most companies integrating AI into their products. For
developers, ethics are important, but it is often very difficult to know what ethics are
and how to put them into practice. Scrutinizing the values that underpin the product
development process (see the following sidebar) is one way of connecting ethics to
edge AI development in a practical way. With values as a foundation, the next step is
to practice responsible design.

Values in Design
Products cannot be divorced from the context in which they are used. This means
that a product is only good if it is useful for doing the task for which it was
designed. Of course, products can be repurposed for unexpected alternative uses
that expand beyond the initially intended design. However, for a developer, it is a very
risky undertaking to hope for unpredictable repurposing, rather than doing good
engineering.

In reality, it is seldom enough for products to be only useful. Utility only presents the
lowest bar of what users expect from a product. Depending on the context, products
also need to be safe to use, have longevity, have low manufacturing and operating
costs, and avoid creating harmful waste throughout production, use, and at the end of
their life. These are just a few nonfunctional requirements (i.e., requirements that do
not contribute to technical performance) that are as important for product success as
technical performance.

The work of developers is difficult, because oftentimes multiple requirements cannot
be met simultaneously and pose trade-offs. Navigating and prioritizing these trade-
offs is a key aspect of what engineering design is all about. Individual people typically
navigate trade-offs based on their values. Values, like sustainability, democracy, safety,
privacy, or equality, are principles that you apply, often unconsciously, to guide
decisions in your life (e.g., if privacy is one of your core values, you may be really
motivated to learn about edge AI because you don’t want your personal data to be
shared with third parties).

It is only natural that developers bring their values into the edge AI design process.
But there is a big caveat to doing this. Values are personal and vary across people
and cultures. You thus cannot rely on your own decision-making heuristics, or on

Building Applications Responsibly | 43

https://wiebketoussaint.com

those of a team of developers who all have the same perspective of life, to result in
a successful product that addresses the needs of diverse users. Having a process for
reaching consensus on how and which values should guide your design decisions is
important and should be part of your development process.

This breakout is only a teaser, and you can learn more about designing for values in
Design for Values—An Introduction, from Delft University of Technology.

To design responsibly, a developer needs to know the limits of their “construction”
materials and master their tools. Moreover, they need to measure and evaluate
whether their product meets the set of functional and nonfunctional requirements
they set out to achieve. That’s where machine learning is nothing like any of the hard‐
ware or software applications that you have developed before. In ML, data are your
“bricks” and your “thermometer” at the same time. This has unique consequences for
edge AI.

Data is your “bricks”: For machine learning models in edge AI applications, your
training data is your building blocks. The quality of your data affects the quality
of your product. Put simply, if it’s not in the training data, you cannot predict it.
If it is underrepresented in the training data, you cannot predict it reliably. If it is
overrepresented in the training data, you’ll mostly predict it, rather than other things.
When you look at representation, it is important to consider the distribution of
subgroups across target labels, not only subgroup representation. It is also important
to look at the quality of target labels across subgroups, as mislabeled training samples
will affect the quality of your models.

Data is your “thermometer”: Where training data is your bricks, evaluation data is
the “thermometer” that measures your models. Using evaluation datasets that do
not represent your application scenarios is like using an uncalibrated thermometer
to measure the temperature. Having high-quality evaluation data is important. In
statistics, small sample sizes require special treatment. The common metrics that are
used to evaluate ML models assume sufficient sample representation. For evaluation
data, it is important that all categories are represented sufficiently across labels, so
that your evaluation is statistically meaningful. If a category is not evaluated across all
target labels, the limits of the models are not known.

There are many implications of using data to build and evaluate models. For exam‐
ple, data is historic and represents the past, not the future. Data only represents a
snapshot in time, while the world is changing. Data is specific to the location where
it is collected and to the entity that has been measured. All of this implies that data
is only a sample and never complete. Incomplete data is a major cause of bias and
discrimination in AI, which has harmed people and caused scandals.

44 | Chapter 2: Edge AI in the Real World

https://oreil.ly/Y7BHu

We’ll take a deep dive into datasets, explaining all of these concepts from scratch, in
Chapter 7.

Important Concepts in Responsible Design
Here are some of the key terms used in machine learning fairness that are very
relevant to responsible design:

Bias
In its most general sense, bias means a slanted or skewed perspective. In algorith‐
mic systems, like AI, bias also describes a system that systematically produces
outputs that favor some and are prejudiced against other groups or categories.
Bias does not have to refer to people. Unless your application targets a particular
group or category, bias is usually not a good thing.

Discrimination
Discrimination refers to outcomes of decision-making processes that treat indi‐
viduals or groups of people differently, based on protected or sensitive attributes.
The law provides formal definitions for which attributes are protected in which
applications. Sensitive attributes can also be defined informally, based on what a
community or society deems as worthy of protecting to ensure equality.

Fairness
Fairness is the most difficult concept to define. This is because no universal
definition of fairness exists. Instead, fairness is highly context dependent and
influenced by the type of application and its context, the risks and harms that
can result from failure, and the stakeholders’ values. People often value fairness
alongside other values like equity, equality, and inclusiveness. Bias can result in
unfairness, and many people consider discrimination to be unfair.

To mitigate bias, avoid discrimination, and evaluate potential unfairness, you need to
understand the context in which your design will be used:

• Who will use your design, and how will they use it?•
• What gap does your design fill?•
• What are the environmental conditions your design will operate in?•
• Are there adversaries who may seek to disrupt your product’s operation?•
• What can go wrong if your design doesn’t work as intended?•

Metaphorically speaking, are you building edge AI from bricks of unfired clay in
a town where it rains for 200 days a year? Or have you carefully considered the
context, and collected training data that allows you to build a structure suitable for

Building Applications Responsibly | 45

the environment? Is your evaluation data a broken piece of equipment, or a carefully
calibrated thermometer?

To wrap up this brief introduction to responsible design and AI ethics, you can think
of a responsible developer as someone who is skilled at using their tools to cra! their
materials into a form that "lls a gap that stakeholders want to have "lled in accordance
with the values agreed on by all that are a$ected by the project.
It is easy to get started with responsible design. Know the limits of your data. Know
the limits of your models. Talk to the people who will use your product. If there’s only
one takeaway for you from this section, it should be this: KUDOs (Know Ur Data,
Obviously) to those that develop responsible edge AI.
—Wiebke (Toussaint) Hutiri, Technical University of Delft

Black Boxes and Bias
There are two aspects of edge AI that make it especially prone to causing unexpected
harm in practice: black boxes and bias.
The term black box is a metaphor for a system that is opaque to analysis and under‐
standing. Data goes in, decisions come out, but the processes within it that lead to
those decisions are inscrutable. This is a common criticism of modern AI, especially
deep learning models, which are famously difficult to dissect. Some algorithms, like
random forests, are quite easy to interpret—if you have access to the model, you can
read its internals to understand why it makes certain decisions. But things are very
different on-device.

Edge devices are often, by design, invisible. They are intended to merge into the
background of our built environments; they’re embedded in our buildings, products,
vehicles, and toys. They are literal black boxes; their contents are invisible, often
protected by layers of security to avoid any detailed inspection.

Once an AI algorithm—no matter how simple—is deployed to an edge device, it
becomes a black box to anyone who is using it. And if the device is deployed in
different real-world conditions to those anticipated by its original developers, even
they may have little insight into why it is behaving the way it does.

This is dangerous in several ways, depending on who you are. The device’s users—the
people who bought and installed it—are now reliant on a system they do not fully
understand. They may trust the device to make the right decisions, but they don’t
have any guarantees that this trust is warranted.

In the example of Uber’s self-driving car, the test driver was supposed to be able to
intervene in a dangerous situation. Ultimately, however, it’s not feasible for a human
operator to be able to reliably compensate for a faulty automated system, no matter

46 | Chapter 2: Edge AI in the Real World

4 As described in “Impact of Legal Requirements on Explainability in Machine Learning” by Adrien Bibal et al.
(arXiv, 2020).

their training. The experiment’s reliance on human intervention to avoid tragedy was
an irresponsible design decision.

The pedestrian, an innocent bystander who just happened to be crossing the road,
was also a victim of the black box nature of the model. If they had been alerted
that the car approaching was an unreliable self-driving prototype, they may not have
chosen to cross. But the edge AI system, hidden inside an ordinary-looking car,
provided no inherent warning. There was no reason for a pedestrian to assume that
the car would not behave like human-driven cars.

Finally, the black box nature of edge AI creates a risk for its developers. For example,
imagine an edge AI camera trap being used to monitor the population of an invasive
species. It might turn out that the camera suffers from false negatives—it fails to
recognize one in every three invasive animals that come past. If the camera trap is
deployed in a remote location, it may not be possible to validate the camera’s output
against reality. The researchers will get an underestimate of the animals’ population—
but they will have no way of knowing, since the raw data may no longer exist.

Unlike server-side AI, which can be deployed and monitored alongside the raw
data it processes, edge AI is often deployed specifically in situations where raw data
cannot be captured. In practice, this means that there’s sometimes no direct way for
developers to measure whether an edge AI application is performing correctly once it
is in the field.

In practice, conservation researchers solve this dilemma by storing all of the photos
captured and performing manual reviews when the memory card is collected, until
confidence is built in the system—but this costs time and money. If there’s no equiva‐
lent mechanism available to monitor an application, or if it isn’t feasible to implement
one within the available budget, it may not be possible to deploy the application
responsibly.

Black Boxes and Explainability
The opposite of a black box system is an explainable one. Some AI algorithms are
more explainable than others, as we’ll learn in “Classical machine learning” on page
103. Even systems using relatively opaque algorithms can be designed in a way that
makes them more explainable—although this can come at the cost of reduced perfor‐
mance or increased complexity. The right trade-off is unique to each application.

Explainability is increasingly a legal requirement for certain projects.4 It’s worth
exploring if this is the case in your regulatory environment.

Building Applications Responsibly | 47

https://oreil.ly/jNZ6m

5 Crossing a street outside of a crosswalk is illegal in many parts of the US, where the Uber experiment was
performed.

6 Machine learning models have a property known as inductive bias, which reflects the internal assumptions
they make about how the world works. This inductive bias is required in order for models to work—so
selecting the appropriate model is very important.

The hazards of black boxes are compounded by the dangers of bias. Bias, in edge AI
systems, results in the system being equipped with a model of its application area that
does not represent the real world. Bias is very likely to occur in systems if developers
do not pay attention to well-known sources of bias. The most common sources of
bias are:

Human bias
All humans are biased toward a certain worldview based on their experiences
(i.e., not appreciating that pedestrians may disregard traffic rules5).

Data bias
Datasets reflect the data collection process, not reality (i.e., a dataset may only
contain examples of people crossing the street at crosswalks).

Algorithmic bias
All AI algorithms have innate limitations,6 and their selection and tuning can
result in bias (i.e., the selected algorithm may not perform well on small, faint
objects like distant pedestrians at night).

Testing bias
Because real-world testing is difficult and expensive, it often only covers com‐
mon cases, leading to biased test coverage (i.e., doing exhaustive testing on an
artificial test course is expensive, and developers wished to reduce costs, so a
critical scenario was not tested).

Bias can be hard to avoid in AI systems. While we tend to associate the term with
deliberate, intentional forms of discrimination (such as deliberate sexism in hiring
processes), in technology projects, it most commonly occurs due to a lack of under‐
standing of the application context, which is then amplified by the limitations of our
resources.

To mitigate bias, a development team needs access to relevant domain experts, a
carefully collected dataset (even if it cannot reflect the exact conditions of the real
world), an algorithm that is appropriate for the task, and a sufficient budget for
real-world testing. In reality, many developer teams only pay attention to these after
they experience costly failures due to bias.

When coupled with black box edge AI products, bias creates a risky situation. As
described earlier, users are likely to assume that a system works. They will trust in

48 | Chapter 2: Edge AI in the Real World

https://oreil.ly/TiRok

the correct, safe, and reasonable operation of a product. With no way to inspect its
mechanism of operation, they are unable to test this assumption themselves. The
responsibility is entirely on developers to meet and manage user expectations.

A successful AI project must be aware of its own limitations and provide the neces‐
sary structure to protect users and the public from its potential failure. It’s critical for
the team behind a product to define the parameters within which the product will
function—and to make sure that its users are aware of these parameters.

Over the course of this book, we’ll learn a framework for ensuring this awareness and
for putting the brakes on projects that are not safe to deploy. It’s an ongoing process,
and one that must run from conceptualization until end of life. Many projects will
run into an ethical quagmire as their true effectiveness is revealed—but some projects
are just wrong from the start.

Technology That Harms, Not Helps
Surveillance systems have become pervasive in our modern world, and the public
has been forced to adapt to their presence without being asked for consent. The
application of AI to surveillance is a complicated topic. While edge AI can potentially
be used to preserve privacy, it can also be used to infringe on human rights.

In November 2019, it was discovered that a major supplier of video surveillance
cameras, Hikvision, was marketing a surveillance camera designed to classify the race
of individuals, including that of Uyghurs, a Chinese minority who have been subject
to vicious repression by their government. #e New York Times reported that Chinese
government authorities are attempting to use edge AI technology to identify Uyghur
people by their appearance and “keep records of their comings and goings for search
and review”.

While Uber’s self-driving experiment resulted in a tragedy caused by bad engineering,
Hikvision’s racial profiling technology is—to the authors of this book, who believe
in a democratic society that promotes personal freedom and equality for all—funda‐
mentally wrong.

When functioning perfectly, the system is designed to enforce a societal bias against
a subgroup of people. There is no way to limit the system’s bias; in fact, the bias is
present as part of the design. While it may be argued that morality is subjective and
that different societies have different values, the fact is that the millions of Uyghur
people being tracked by this system have had no choice in the matter—and would
likely reject it if asked.

Such clear violations of moral expectations may seem obvious, but human psychol‐
ogy—naivety, arrogance, or greed—makes it easy for a group of intelligent people
to cross moral boundaries without considering the harm they might cause. One
example of this is the service HireVue. Designed to reduce the cost of interviewing

Building Applications Responsibly | 49

https://oreil.ly/06M6r
https://oreil.ly/06M6r
https://oreil.ly/u2vfr
https://oreil.ly/u2vfr

job candidates, companies use HireVue’s product to analyze recorded videos where
candidates answer specific questions. The company claims to use AI algorithms to
rate the likelihood of a candidate being successful in a given role.

Naively, the developers of HireVue did not consider the impact of human, data,
algorithmic, and testing biases on their work. Their product, built to use audio-
visual information in hiring decisions, inevitably incorporated the voice, accent, and
appearance of candidates when making hiring decisions. The clear risk of discrimina‐
tion this created led to a lawsuit and a backlash from the public, resulting in HireVue
having to scrap features of their product and conduct a third-party audit of their
algorithms.

A further aspect to consider is that an edge AI technology may be used by customers
for purposes other than those for which they were designed—and these purposes may
be unethical. For example, consider an edge AI camera trap designed for spotting
an endangered species. While intended for scientific research, the camera trap might
easily be repurposed by poachers as a tool for locating animals that they wish to cap‐
ture and sell on the black market. It’s important to consider these potential “off-label”
uses when designing an application, since the risk may be so high that it outweighs
the potential benefits of the product.

The costs of negligence
Technologies that use artificial intelligence are often designed to integrate deeply into
our world, shaping the day-to-day interactions we have with our homes, places of
work, businesses, governments, and each other. This means that the failure of these
systems can have a profound impact on people.

There isn’t space in this book for a full discussion of the myriad ways this can happen,
but here are a few examples:

Violations due to negligence
Medical hardware could misdiagnose patients, affecting their treatment.

Surveillance equipment could direct enforcement against some groups of people
more than others, leading to unequal justice.

Educational toys could perform better for some children than others, reducing
access to learning opportunity.

Safety devices could fail due to lack of testing with different user groups, leading
to bodily harm.

Unsecured devices could be compromised by criminals, facilitating crime.

50 | Chapter 2: Edge AI in the Real World

https://oreil.ly/R7Dy3
https://oreil.ly/R7Dy3

Deliberate ethical violations
Pervasive AI-powered surveillance could impact personal privacy.

Smart sensors could be used by poachers to target endangered wildlife.

Weapons augmented with edge AI could increase conflict deaths and disrupt the
global balance of power.

Mitigating societal harms
The framework provided throughout this book will encourage you to take time dur‐
ing the development process to understand the societal implications of what you are
building and to make go/no-go decisions based on your findings. Responsible design
is very context specific, and mitigating societal harm should be done systematically
and continuously to ensure you are on the right path.

A best practice for building responsible applications of AI is to assemble a product
team with diverse perspectives in both technical expertise and lived experience.
Human biases amplify technical biases, and a diverse team is less likely to have blind
spots in their collective worldview. If you have a small team, it’s important to budget
time and money for diversity, and to reach out to the wider community to find
people who are willing to help evaluate your ideas and provide feedback, adding their
perspectives to the mix.

Psychological Safety and Ethical AI
Your team’s insight is crucial in identifying potential harms, so it’s vital that they feel
like they have the ability to speak up and make their voices heard throughout the
development process. Even in the best working environments it can feel risky for
employees to speak up when they think their feedback may disadvantage them.

For example, imagine an employee who notices a potential risk but feels unable to
mention it because they feel hesitant to derail an important project. In reality, the
employee may save the company time, money, and reputation by pointing out a
significant issue. However, if the employee feels afraid of a potential negative impact
on their career, reputation, or the team’s morale, they may choose not to say anything
until it is too late.

Psychological safety is the feeling of being able to speak up and discuss issues without
fearing negative consequences. This, along with a culture that reinforces the impor‐
tance of ethics in AI, are necessary conditions for building successful AI projects.
Some valuable resources on this topic are covered in “Diversity” on page 126.

Building Applications Responsibly | 51

7 Travis LaCroix and Alexandra Sasha Luccioni, “Metaethical Perspectives on ‘Benchmarking’ AI Ethics”, arXiv,
2022.

There is no way to benchmark the “ethicality” of a system.7 Instead, we need to
understand the values underlying the creation of a system—including what those
values are, who they belong to, and in which context they are intended to apply. This
awareness allows us to shape our work into useful products that bring benefit, not
harm.

Various companies and services exist to help guide teams through the process of
developing AI responsibly, or to audit existing applications for potential harms. If
you are concerned about harmful “off-label” use of your work, there are also some
legal tools at your disposal. Responsible AI Licenses (RAIL) are technology licenses
designed to help developers restrict the legal use of artificial intelligence products for
harmful applications.

By attaching a RAIL to their product, developers create legal grounds to prevent
its misuse in a specific list of applications, which can be extended to include any
categories the developer would like to include. Some of the default prohibited options
include surveillance, crime prediction, and generating fake photography. Of course,
this only helps prevent unethical usage by entities that consider themselves bound by
legal agreements.

Finally, there are many free, high-quality online resources that you can use to learn
more about ethical and responsible AI and evaluate the work you are doing. To get
you started, here’s a short list:

• Berkeley Haas’ guide, Mitigating Bias in Artificial Intelligence•
• Google’s recommended practices for responsible AI•
• Microsoft’s responsible AI resources•
• PwC’s responsible AI toolkit•
• Google Brain’s “People + AI Research (PAIR)”•

For a detailed high-level summary of current approaches to principles in AI, we
also recommend reading “Principled Artificial Intelligence: Mapping Consensus in
Ethical and Rights-Based Approaches to Principles for AI” (J. Fjeld et al., Berkman
Klein Center Research Publication, 2020).

52 | Chapter 2: Edge AI in the Real World

https://oreil.ly/RS4p1
https://www.licenses.ai
https://oreil.ly/8uXGZ
https://oreil.ly/SBP-3
https://oreil.ly/ZOvEm
https://oreil.ly/zZl1N
https://oreil.ly/bco24
https://oreil.ly/8BM54
https://oreil.ly/8BM54

Summary
In this chapter, we’ve developed a solid understanding of how edge AI fits into
our world. We know the top use cases, the key benefits, and the critical ethical
considerations that need to be applied.

We’re now ready to dive into some of the technical details. In the next chapter, we’ll
learn about the technology that makes edge AI work.

Summary | 53

CHAPTER 3

The Hardware of Edge AI

It’s now time to meet the devices, algorithms, and optimization techniques that power
edge AI applications. This chapter is designed to provide a broad overview of the
most important technical elements of the field. By the end of it, you’ll have the
building blocks necessary to start the high-level planning of an edge AI product.

Sensors, Signals, and Sources of Data
Sensors are electronic components that give devices the power to measure their
environments and detect human input. They range from extremely simple (trusty
old switches and variable resistors) to mind-blowingly sophisticated (light detection
and ranging [LIDAR] and thermal imaging cameras). Sensors provide our edge AI
devices with the streams of data that they use to make decisions.

Beyond sensors, there are other sources of data that our devices can tap into. These
include things like digital device logs, network packets, and radio transmissions.
Although they have a different origin, these secondary data streams can be just as
exciting as sources of information for AI algorithms.

Different sensors provide data in different formats. A few data formats are commonly
encountered in edge AI applications. They can be summarized as follows:

Time series
Time series data represents the change in one or more values over time. A time
series may contain multiple values from the same physical sensor—for example, a
single sensor component may provide readings of both temperature and humid‐
ity. Time series data is often collected by polling a sensor at a specific rate, such
as a certain number of times per second, to produce a signal. The rate of polling
is known as the sampling rate, or frequency. It is common that the individual

55

readings (known as samples) are collected within a constant period, so the time
interval between two samples is always the same.

Other time series may be aperiodic, meaning the samples are not collected at
a constant rate. This might happen in the case of a sensor that detects specific
events—for example, a proximity sensor that toggles a pin when something
comes within a certain distance. In this case, it is common to capture the exact
time when an event happened alongside the sensor value itself.

Time series may represent summary information. For example, a time series
could consist of the number of times something happened during the interval
since the last value.

Time series data is the most common form of sensor data for edge AI. It is partic‐
ularly interesting because, in addition to the sensor values, the signal includes
information about the timing of the values. This provides useful information
when attempting to understand how a situation is changing. In addition to
timing information being useful, time series data is valuable because it contains
multiple readings from the same sensor, reducing the impact of momentary
anomalous readings.

There is no typical frequency for a time series—it can range from a single sample
a day to millions of samples per second.

Audio
A special case of time series data, audio signals represent the oscillation of sound
waves as they travel through the air. They are generally captured at a very high
frequency—thousands of times per second. Since hearing is a human sense, huge
amounts of research and development have gone into innovations that make it
easier to work with audio data on edge devices.

These technologies include special signal processing algorithms that make it
easier to process audio data, which in its raw form is typically captured at an
extremely high frequency. As we will see later, audio signal processing is so
common that a lot of embedded hardware comes with built-in functionality for
performing it efficiently.

One of the most widespread uses of edge AI audio processing is in speech
detection and classification. That said, audio doesn’t even have to be in the spec‐
trum of human hearing. Sensors used by edge AI devices can potentially capture
ultrasound (higher than audible by human hearing) and infrasound (lower than
audible by humans) data.

56 | Chapter 3: The Hardware of Edge AI

Image
Images are data that represent the measurements taken by a sensor that captures
an entire scene, as opposed to a single point. Some sensors, like cameras, use
an array of tiny elements to capture data from the entire scene in one go. Other
sensors, like LIDAR, build up an image by mechanically sweeping a single sensor
element across the scene over a period of time.

Images have two or more dimensions. In their typical form, they can be thought
of as a grid of “pixels,” where the value of each pixel represents some property of
the scene at the corresponding point in space. A basic example of this is shown
on the left side of Figure 3-1. The size of the grid (for example, 96x96 pixels) is
known as the resolution of the image.

A pixel may have multiple values, or channels. For example, while a grayscale
image only has one value per pixel, representing how light or dark the pixel is,
a color image may have three values per pixel (in the RGB model), representing
three colors (red, blue, and green) that can be mixed to represent any other color
in the visible spectrum. This structure is shown on the right side of Figure 3-1.

Figure 3-1. #e diagram on the le! represents the pixels of a single channel image;
the diagram on the right represents the structure of a three-channel image, such as
an RGB photograph

The typical representation of images, as an n-dimensional grid, means that they
contain spatial information about the relative proximity of different aspects of a
scene to one another. This information is extremely valuable in understanding
what a scene contains. There are entire classes of image processing and computer
vision algorithms that make use of this information.

Images don’t have to represent visible light, or even light at all. They can repre‐
sent infrared light (often used to measure the temperature of parts of a scene),
time of flight (in the case of LIDAR, which measures how long it takes light
to bounce back from each part of a scene), or even radio waves (think of data
collected by a radio telescope, or on a radar screen).

Sensors, Signals, and Sources of Data | 57

1 As described by the IEEE 754 standard.

Video
Technically another special case of time series data, video deserves its own cate‐
gory due to its distinct utility. A video is a sequence of images, each representing
a snapshot of a scene at a point in time. As a time series, video has a sampling
rate—although in the case of video it is typically referred to as the frame rate,
since each individual image in the sequence is known as a frame.

Video is a very rich format—it contains both spatial information (within each
frame) and temporal information (between each frame). This richness means
that it tends to occupy a lot of memory, so it tends to require more capable
computing devices.

How Are Values Represented?
All of the preceding categories represent individual sensor readings using single
numeric values. For example, a time series is a sequence of individual readings, and
an image is a grid composed of individual readings.

Each reading is a number and can be represented on a computer in a variety of
different ways. For example, here are some typical numeric types used to represent
sensor data in C++:

• Boolean (1 bit): a number with two possible values•
• 8-bit integer: a nondecimal number with 256 possible values•
• 16-bit integer: a nondecimal number with 65,536 possible values•
• 32-bit floating point:1 can represent a wide range of numbers with up to seven•

decimal places, with a maximum of 3.4028235 × 1038

By varying the numeric type used to represent a value, developers can trade numeri‐
cal precision for reduced memory usage and computational complexity.

Types of Sensors and Signals
There are thousands of different types of sensors on the market. A nice way of group‐
ing them is by their modality. According to Carnegie Mellon University, modality
refers to the way in which something happens or is experienced. From a human
perspective, our senses of sight, hearing, or touch all have different modalities.

58 | Chapter 3: The Hardware of Edge AI

https://oreil.ly/oGnUz
https://oreil.ly/WaiBM
https://oreil.ly/WaiBM

There’s no strictly defined list of sensor modalities, and the best way to describe them
may vary between industries and applications. In the following section, we’ll explore
some groupings that make sense from a broad edge AI perspective:

• Acoustic and vibration•
• Visual and scene•
• Motion and position•
• Force and tactile•
• Optical, electromagnetic, and radiation•
• Environmental, biological, and chemical•

There are also many nonsensor data sources available to edge devices—we’ll go
through those, too.

Acoustic and Vibration
The ability to “hear” vibrations allows edge AI devices to detect the effects of
movement, vibration, and human and animal communication at a distance. This
is done with acoustic sensors, which measure the effect of vibrations that are traveling
through a medium that might range from air (in the case of microphones, like the
one in Figure 3-2) to water (hydrophones) or even the ground (geophones and
seismometers). Some vibration sensors are designed specifically for use with heavy
industrial machinery.

Figure 3-2. A 3D rendering of a surface-mount microelectromechanical systems
(MEMS) microphone, found in many modern products

Sensors, Signals, and Sources of Data | 59

An acoustic sensor typically provides a time series that describes the variation of
pressure in its medium. Acoustic signals contain information across various frequen‐
cies—for example, the high and low notes of a singing voice. Acoustic sensors gener‐
ally operate in a certain frequency range, and they may not have a linear response to
frequencies even within that range.

In addition to their nonlinear frequency response, the ability of acoustic sensors
to capture high frequencies depends on their sample rate. To accurately capture a
high-frequency signal, an acoustic sensor must have a sufficiently high sample rate.
When building an edge AI application for acoustics, make sure you understand the
properties of the signal you are trying to measure, and choose sensor hardware that is
a good fit.

Visual and Scene
It is common for edge AI applications to need to understand the scenery around
them in a passive manner, without reaching out to touch it. The most common
sensors used for this task are image sensors, ranging from tiny, low-power cameras
(as seen in Figure 3-3) to super high-quality, multimegapixel sensors. As described
previously, the images obtained from image sensors are represented as arrays of
pixel values.

Figure 3-3. A tiny image sensor, the type of form factor that might be used in an
embedded device

Image sensors capture light using a grid of sensor elements. In a camera, light from a
scene is focused onto the sensor by a lens. The area that can be imaged by a camera is
known as its field of view, and it depends on the size of the lens and the image sensor.

60 | Chapter 3: The Hardware of Edge AI

Some common variations in image sensors:

Color channels
For visual light, sensors can commonly capture data in grayscale or color (red,
green, and blue, or RGB).

Spectral response
The wavelengths of light the image sensor is sensitive to, which may exceed
the range of human vision. This can even include infrared radiation, allowing
sensors known as thermal cameras to “see” heat.

Pixel size
Larger sensors can capture more light per pixel, increasing their sensitivity.

Sensor resolution
The more elements on a sensor, the finer detail it can capture.

Frame rate
How frequently a sensor can capture an image, typically in frames per second.

Since illumination of a scene is sometimes required, it is common to pair image
sensors with light emitters—in both visible and invisible ranges of the spectrum. For
example, an infrared LED can be used with an infrared-sensitive camera to illuminate
dark scenes without disturbing humans or animals with visible light.

Larger, higher resolution sensors typically require more energy. High-resolution sen‐
sors produce large amounts of data, which can be difficult to process on smaller edge
AI devices.

A relatively new group of image sensors, known as event cameras, work slightly
differently. Instead of capturing the entire visual field at a specific frame rate, each
pixel in the camera responds individually to changes in brightness but remains silent
if nothing is happening. The result is a time series of individual pixel changes that can
be easier for edge AI devices to process than a large sequence of full frames.

Another interesting type of image sensor is known as range imaging sensors. These
allow devices to image their surroundings in three dimensions—often by emitting
light and measuring how long it takes to bounce back, a technique known as “time
of flight.” A common time-of-flight sensor technology is known as LIDAR. LIDAR
sensors work by scanning their surroundings with a laser beam, measuring how
much of the light is reflected back to the sensor. This allows them to visualize an area
in three dimensions, as shown in Figure 3-4.

Sensors, Signals, and Sources of Data | 61

Figure 3-4. #is image from the PandaSet open source LIDAR dataset shows a typical
LIDAR “point cloud,” with each point in the 3D visualization representing a distance
that was measured by the laser; the inset photograph at the top right shows the same
scene from the perspective of an image sensor

LIDAR and other time-of-flight sensors are typically much larger, more complex,
expensive, and energy intensive than standard image sensors. The large amounts of
data they generate can be difficult to process and store on edge devices, which also
limits their utility. LIDAR is typically used for mapping environments—including to
help self-driving vehicles navigate the world.

Radar, or radio detection and ranging, is also occasionally used by edge devices to
understand the position of surrounding objects in three dimensions, potentially at
long range. Like LIDAR, it is complex and has high energy requirements—but is
definitely an option if your use case requires it.

Motion and Position
It can be useful for edge AI devices to understand both where they are and where
they might be headed. Fortunately, there are many different types of sensors that can
help. This is a broad category, ranging from the simplest (mechanical tilt switches) to
the most complicated (the satellite-enabled GPS [Global Positioning System]). As a
whole, they allow devices to understand their position and motion within the world.

Here’s a list of typical motion and position sensors for edge AI applications:

Tilt sensor
A mechanical switch that is on or off depending on its orientation. Super cheap
and easy to use.

62 | Chapter 3: The Hardware of Edge AI

https://pandaset.org

Accelerometer
Measures the acceleration (the change in velocity over time) of an object across
one or more axes, often at a high frequency. Accelerometers are the Swiss Army
knives of motion sensing, used for everything from recognizing the characteristic
motions of sporting activities (in smart watches) to sensing the vibrations of
industrial equipment (in predictive maintenance). They also always know which
way is down, thanks to the pull of gravity.

Gyroscope
Measures the rate of rotation of an object. Often paired with an accelerometer to
give a picture of the motion of an object in 3D space.

Rotary or linear encoder
Measures the exact position of either a shaft or axle (rotary) or a linear mech‐
anism (like the position of an inkjet printer head). Often used in robotics to
capture the positions of robots’ wheels, limbs, and other appendages.

Time of %ight
A sensor that uses an electromagnetic emission (light or radio) to measure the
distance from a sensor to whatever object is directly in its line of sight.

Real-time locating systems (RTLS)
Systems that use multiple transceivers in fixed locations around a building or site
to track the position of individual objects, such as pallets in a warehouse.

Inertial measurement unit (IMU)
A system that uses multiple sensors to approximate the current position of a
device based on its motion as measured from an internal frame of reference (as
opposed to using external signals such as GPS).

Global Positioning System (GPS)
A passive system that uses radio signals from satellites to determine the location
of a device, down to a few meters. Requires line of sight from the device to
several satellites.

Motion and position are typically represented as a time series of sensor readings.
Given the number of sensor types in this category, there are options for every cost
and energy budget. Typically, the more confidence in absolute position required, the
more cost and complexity involved.

Force and Tactile
From switches to load cells, force and tactile sensors help edge AI devices measure
the physicality of their environment. They can be helpful in facilitating user interac‐
tion, understanding the flow of liquids and gases, or measuring the mechanical strain
on an object.

Sensors, Signals, and Sources of Data | 63

Here are some typical force and tactile sensors:

Buttons and switches
Traditional switches used as simple buttons for human interaction, but also serve
as sensors that provide a binary signal that indicates when a device is colliding
with something.

Capacitive touch sensors
Measure the amount that a surface is being touched by a conductive object, like a
human finger. This is how modern touchscreens work.

Strain gauges and %ex sensors
Measure how much an object is being deformed, which can be interesting for
detecting damage to objects and for building tactile human interface devices.

Load cells
Measure the precise amount of physical load that is applied to them. They come
in a wide range of sizes, from tiny (useful for measuring the weight of small
objects) to gigantic (measuring strain in bridges and skyscrapers).

Flow sensors
Designed to measure the rate of flow in liquids and gases, such as water in a pipe.

Pressure sensors
Used to measure pressure of a gas or liquid, either environmental (such as
atmospheric pressure) or inside a system (such as inside a car tire).

Force and tactile sensors are typically simple, low energy, and easy to work with.
Their measurements are easy to represent as time series. They are especially useful
when building tactile user interfaces or detecting when a robot (or other device that
can move around) has hit something.

Optical, Electromagnetic, and Radiation
This category includes sensors that are designed to measure electromagnetic radia‐
tion, magnetic fields, and high energy particles, in addition to basic electrical proper‐
ties such as current and voltage. This may sound exotic, but it includes familiar things
like measuring the color of light.

Here are some typical optical, electromagnetic, and radiation sensors:

Photosensor
A category of sensor that detects light at various wavelengths, both visible and
invisible to the human eye. This can be useful for many things, from measuring
ambient light levels to detecting when a beam of light has been broken.

64 | Chapter 3: The Hardware of Edge AI

Color sensor
Uses photosensors to measure the precise color of a surface, which can be helpful
for recognizing different types of objects.

Spectroscopy sensor
Uses photosensors to measure the way that various wavelengths of light are
absorbed and reflected by materials, giving an edge AI system insight into their
composition.

Magnetometer
Measures the strength and direction of magnetic fields. A subtype of magneto‐
meter is a digital compass, which can indicate the direction of north.

Inductive proximity sensor
Uses an electromagnetic field to detect nearby metal. It is commonly used to
detect vehicles for traffic monitoring.

Electromagnetic "eld (EMF) meter
Measures the strength of electromagnetic fields. This includes those emitted
incidentally, for example by industrial equipment, or those intentionally emitted
by radio transmitters.

Current sensor
Measures the flow of current through a conductor. This can be useful in monitor‐
ing industrial equipment since fluctuations in current can provide information
about the functioning of the equipment.

Voltage sensor
Measures the amount of voltage across an object.

Semiconductor detector
Measures ionizing radiation, which is composed of extremely fast-moving parti‐
cles, typically created by the decay of radioactive substances.

As with many other sensors, this category generally provides a time series of meas‐
urements. While useful for measuring ambient conditions, the sensors described here
can also be useful in arrangements where they detect emissions that are produced
deliberately by a device. For example, a photosensor can be paired with a light emitter
on the other side of a hallway to detect when someone is moving past.

Environmental, Biological, and Chemical
A loose category that includes many different types of sensors; environmental, bio‐
logical, and chemical sensing allows edge AI devices to sniff the composition of the
world around them. Some common types of sensors include:

Sensors, Signals, and Sources of Data | 65

Temperature sensor
Measures temperature, either of the device itself or of a distant source of infrared
emissions.

Gas sensor
Many different sensors exist to measure concentrations of different gases. Com‐
mon gas sensors include humidity sensors (which measure water vapor), vola‐
tile organic compound (VOC) sensors, which measure a selection of common
organic compounds, and carbon dioxide sensors.

Particulate matter sensor
Measures the concentration of tiny particles in a sample of air and are commonly
used to monitor pollution levels.

Biosignals sensor
Covers a vast range of signals that are present in the bodies of living things—for
example, measurement of electrical activity in the human heart (electrocardiog‐
raphy) and brain (electroencephalography).

Chemical sensor
Many different sensors available that are designed to measure the presence or
concentration of specific chemicals.

This category of sensors generally provides a time series of readings. Due to their
need to interact chemically and physically with the environment, they can sometimes
be difficult to work with—for example, calibration against known quantities of chem‐
icals is often required, and sometimes sensors require a warm-up period before they
can take a reliable reading. It is common for environmental sensors to degrade over
time and require replacement.

Other Signals
In addition to gathering signals from the physical world, many edge AI devices have
access to a rich feed of virtual data. This can be split roughly into two groups:
introspective data, about the state of the device itself, and extrospective data, about
the systems and networks that the device is connected to.

Depending on the device, various types of internal state may be available. These could
include:

Device logs
These track the lifecycle of the device since it was powered up. This could
provide information about many different things: configuration changes, duty
cycle, interrupts, errors, or anything else you choose to log.

66 | Chapter 3: The Hardware of Edge AI

Internal resource utilization
This might include available memory, power consumption, clock speed, operat‐
ing system resources, and usage of peripherals.

Communications
A device can keep track of its physical connections, radio communications,
networking configuration and activity, and the resulting energy usage.

Internal sensors
Some devices have internal sensors; for example, many system-on-chip devices
include a temperature sensor to monitor their CPU.

One interesting usage of introspective data is in preserving battery life. Lithium
rechargeable batteries can lose capacity if they are continually held at 100% charge
while plugged in. Apple’s iPhone uses an edge AI feature known as Optimized Battery
Charging in order to avoid this problem. It uses an on-device machine learning
model to learn the user’s charging routine, then uses this model to minimize the
amount of time the battery spends full—while ensuring the battery is still charged
when the user needs it.

Extrospective data streams, which come from outside the device, can be extremely
rich in information. Here are some possible sources:

Data from connected systems
It’s common for edge AI devices to be deployed in a network, and data forwarded
by adjacent devices can be used as input to AI algorithms. For example, an IoT
gateway could use edge AI to process and make decisions based on the data
collected by its nodes.

Remote commands
An edge AI device might receive control instructions from another system or
user. For instance, the user of a drone could request that it move to a certain
coordinate in 3D space.

Data from APIs
An edge AI device can request data from remote servers to feed into its algo‐
rithms. For example, a home heating system equipped with edge AI might
request weather forecast data from an online API and use the information to
help decide when to turn the heating on.

Network data
This might include network structure, routing information, network activity, and
even the contents of data packets.

Some of the most interesting edge AI systems make use of all of these data streams
together. Imagine an agricultural technology system that helps a farmer take care of
crops. It might include remote sensors out in the fields, connections to important

Sensors, Signals, and Sources of Data | 67

https://oreil.ly/rWJbA
https://oreil.ly/rWJbA

online data sources (like the weather forecast, or the price of fertilizer), and a control
interface used by the farmer. As an edge AI system, it could potentially operate
without an internet connection—but if it had one, it could make use of valuable
information.

In more complex system architectures, edge AI also pairs nicely with server-side AI;
we’ll learn more about that later in this chapter.

Processors for Edge AI
One of the most exciting parts of edge AI is the vast—and growing—array of hard‐
ware that applications can make use of. In this section, we’ll explore the high-level
categories of hardware and learn what makes each one suited to a particular niche.

We’re in the midst of a Cambrian explosion of edge AI hardware, so in the time
since this book was published it is likely that there are even more options than what
is printed here. With a spectrum that runs from cheap, low-power microcontrollers
(so-called “thin edge” devices) to lightning-fast GPU-based accelerators and edge
servers (known as “thick edge”), developers can find hardware that is the perfect fit
for almost any application.

Edge AI Hardware Architecture
The architecture of a hardware system is the way its components connect to each
other. Figure 3-5 shows the typical hardware architecture of an edge device.

Figure 3-5. Architecture of an edge device

68 | Chapter 3: The Hardware of Edge AI

The beating heart of the device is the application processor. This is the general-
purpose processor that coordinates the application and, by default, runs all of the
algorithms and logic that make up its program.

In many cases, the application processor will have integrated coprocessors: built-in
additional hardware that is highly efficient at performing certain computations. For
example, many processors have a built-in floating-point unit (FPU) designed to
quickly perform floating-point calculations. Medium- and high-end MCUs increas‐
ingly have integrated hardware that can accelerate functions relevant to edge AI, such
as digital signal processing and linear algebra.

The application processor also integrates the volatile memory (such as RAM) that is
used as working memory during program execution. That said, it’s also common
to have additional RAM that is external to the processor itself and lives on a
separate chip.

On Die Versus O! Die
A computer system typically consists of integrated circuits (ICs) made from silicon
chips attached to a printed circuit board (PCB). For example, the application pro‐
cessor is an IC. A silicon chip consists of a literal piece of silicon, upon which is
etched a series of complex patterns that make up a processor. This piece of silicon is
known as a die.

When referring to a processor and the other components it integrates with, it’s
common to hear the terms on die and o$ die. On-die components are located on the
same piece of silicon as the processor itself, whereas off-die components are located
in separate ICs attached to the same PCB.

Because on-die components are physically closer to the main processor, they’re typi‐
cally faster and more energy efficient: it takes less time and energy to send data back
and forth between them. However, the more items located on the same die, the bigger
the die has to be—and large dies tend to be expensive and power hungry.

Every embedded hardware design has to strike a balance between what is included on
die and off die. For example, if efficiency is the highest priority it may make sense to
choose a processor with on-die features. If cost is more important, off die may be the
way to go.

Many designs make use of both on-die and off-die components. For example, a
system may have a small amount of on-die RAM for program execution combined
with a larger amount of off-die RAM used to buffer raw sensor data that is waiting to
be processed.

Processors for Edge AI | 69

2 While flash memory can be reprogrammed, it’s still referred to as ROM in an embedded context.
3 Peripheral interfaces, such as GPIO, I2C, SPI, and UART, are important when designing hardware but are

beyond the scope of this book. Most modern embedded processors have decent peripheral support.

RAM is very fast memory, but it uses a lot of energy, and the contents of RAM are
lost when the device shuts down. It’s quite expensive and takes up a lot of physical
space, so it’s often a very limited resource.

The application processor is connected to nonvolatile memory, commonly known as
ROM (read-only memory) or flash,2 which can similarly be located either on die or
off die (in Figure 3-5 it is shown off die). Nonvolatile memory is used to store things
that don’t often change and need to be preserved when the system is shut down. This
might include software programs, user configuration, and machine learning models.
It’s slow to read and extremely slow to write.

Many designs have discrete coprocessors. Similar to integrated coprocessors, these
exist to perform fast and efficient mathematics for specific purposes. Unlike integra‐
ted coprocessors, they are located off die. They may be far more powerful (and
power hungry) than the application processor: for example, a low-power SoC may be
combined with a powerful GPU.

The peripherals of the processor provide its interface with the rest of the world, via
various standards.3 The most common things peripherals are used to connect with
are sensors and network hardware.

Microcontrollers and Digital Signal Processors
It could be argued convincingly that microcontrollers are the foundation of our
modern world. They’re the tiny, cheap computers that animate everything from
car engines to smart appliances. Microcontrollers are manufactured in astonishing
volume; it’s projected that 26.89 billion of them will be shipped in 2022—that’s three
and a half for every human being on the planet.

MCUs

Microcontrollers are often referred to as MCUs, an acronym for
microcontroller units.

Microcontrollers are typically used for single-purpose applications, like controlling
a piece of machinery. This means that they can get away with being a lot simpler
than other types of computers that need to run multiple programs—for example, they
generally do not use an operating system.

70 | Chapter 3: The Hardware of Edge AI

https://oreil.ly/d4KPy

4 Another characteristic of firmware is that, unlike an operating system, firmware is not typically intended to be
modified by the end user.

Instead, their software (known as "rmware) is run directly on the hardware and
incorporates the low-level instructions necessary to drive any peripherals.4 This can
make software engineering for microcontrollers quite challenging, but it gives devel‐
opers a lot more control over exactly what is going on when their programs run.

One of the distinguishing characteristics of microcontrollers is that the majority of
their components are implemented on a single piece of silicon; this is key to their
relatively low cost. In addition to a processor, a microcontroller is generally equipped
with flash memory (for storing programs and other useful data), RAM (for storing
state during program execution), and various technologies for communicating with
other devices (such as sensors) using either digital or analog signals.

The microcontroller world is incredibly diverse—part of the reason they are so
valuable is that they are available in variants to suit every imaginable situation. For
the purposes of this book, we’ll divide them into three main categories: low-end,
high-end, and digital signal processors.

Low-end MCUs
Many MCUs are designed specifically for low cost, small size, and energy efficiency.
The trade-off is that they have limited computational resources and capabilities. Here
are some typical specifications:

• 4-bit to 16-bit architecture•
• <100 MHz clock speed•
• 2 KB to 64 KB of flash memory•
• 64 bytes to 2 KB of RAM•
• Digital input and output•
• Current draw: single digits to tens of milliamps at ~1.5–5 volts when running,•

and microamps when sleeping while waiting for input
• Cost: one or two dollars per unit when bought in large volumes•

Processors for Edge AI | 71

5 The Intel 8051 was first developed in 1980 and is still in use today.

A Note on Power
The amount of energy that a microcontroller consumes depends on many factors,
most of which are in the developers’ hands to control. Among other things, you can
decrease power consumption by running the processor at a reduced speed, switching
off features when not in use, and putting the entire microcontroller into idle mode
when it is not currently processing data.

This flexibility, coupled with the general diversity of the microcontroller market,
makes it tricky to quote exact numbers for power consumption. If you’re designing
against tight power constraints, you’ll want to evaluate the hardware and measure
energy use for yourself.

Many low-end MCUs used today are based on designs that have been in use since the
1980s.5 While technology has continued to improve, there’s always a need for simple,
low-cost and low-power hardware, so these chips are here to stay. They are extremely
common across many industries.

Low-end MCUs have some significant disadvantages when it comes to edge AI.
Since they lack memory and compute, they aren’t well suited to dealing with large
amounts of data or complex signal processing. They generally do not have any hard‐
ware implementation of floating-point arithmetic, meaning calculations involving
rational numbers can be incredibly slow. These attributes limit the types of edge AI
algorithms they can run.

The typical applications for low-end MCUs play to their benefits: high-reliability
automotive and medical devices and low-cost appliances, gadgets, and infrastructure.
One popular low-end MCU is the Atmel 8-bit AVR platform. While they are an
important part of the MCU world, their computational limitations mean that low-end
MCUs probably shouldn’t be your first choice of target for an edge AI application.

That said, as we mentioned in the first section of the book, edge AI programs don’t
always have to be computationally challenging. Low-end MCUs are perfectly capable
of running complex conditional logic, which may be enough for what you need to do.
They can also form part of a network of connected devices that makes use of edge
AI—for example, a low-end MCU could capture sensor data and forward it to a more
sophisticated device for decision making.

72 | Chapter 3: The Hardware of Edge AI

https://oreil.ly/5DV2e
https://oreil.ly/Buwcj

6 A 32-bit processor can operate on twice the data in one go as a 16-bit processor can. This means data can be
processed more quickly. It also supports a larger amount of RAM.

High-end MCUs
At the other end of the MCU spectrum, today’s most powerful microcontrollers
have enough compute to give a ’90s vintage personal computer a run for its money.
In many cases, they still manage to be highly energy efficient. Here are some
typical specs:

• 32-bit architecture•
• <1000 MHz clock speed•
• 16 KB to 2 MB of flash•
• 2 KB to 1 MB of RAM•
• Optional hardware support for faster math•
• Floating-point unit (FPU)•
• Single instruction, multiple data (SIMD) instructions•
• Optional multiple processor cores•
• Digital and analog input and output•
• Current draw: low single digits to high tens of milliamps at ~1.5–5 volts; micro‐•

amps while sleeping
• Cost: from low single digits to low tens of dollars per unit•

High-end MCUs provide a big jump in performance, thanks to faster clock speeds
and a 32-bit architecture.6 In addition, many models of MCUs have hardware support
for some neat tricks that increase computation speed. One of these, SIMD, allows the
processor to run several computations in parallel—which can be extremely helpful
when running signal processing and machine learning applications, which involve a
lot of computation.

Increasingly, high-end MCUs are designed with edge AI applications in mind. It’s
common for vendors to offer software and libraries that help optimize edge AI code
to run efficiently on-device. Another big benefit is a trend toward providing larger
amounts of flash and RAM—very helpful for manipulating data and storing large
machine learning models.

High-end MCUs are used in a huge range of use cases, from sensing and IoT
to digital gadgets, smart appliances, and wearables. At the time of writing, they
represent the sweet spot for cost, energy usage, and computational ability for embed‐
ded machine learning. They have just enough power to run capable deep learning

Processors for Edge AI | 73

models—including deep learning models that can process visual information—but
they remain simple enough to embed very cheaply into a wide range of applications.

Microcontrollers based on Arm’s Cortex-M cores are extremely popular, such as
the Nordic nRF52840 and the STMicroelectronics STM32H743VI. There are also
popular options based on the RISC-V architecture, such as the Expressif ESP32.

As edge AI becomes more important, it’s increasingly common to pair general-
purpose, high-end microcontrollers with purpose-built coprocessors designed to
accelerate deep learning workloads. We’ll cover that more in “Deep Learning Acceler‐
ators” on page 77.

Performance Characteristics

An average high-end microcontroller can process audio using deep
learning in near real time, and low-resolution video at a second or
so per frame.

Digital signal processors (DSPs)
An interesting subcategory, DSPs are special microcontrollers that are designed to
be highly efficient at transforming digital signals. Instead of general-purpose compu‐
tation, their architecture is designed to run specific algorithms and mathematical
operations as quickly as possible—including things like multiply–accumulates and
Fourier transforms, which we’ll encounter in Chapter 4.

As luck would have it, many of those mathematical operations are very helpful in
edge AI, both for processing data and for running machine learning models. This
can make DSPs a valuable tool. The downside of DSPs is that they are not designed
for general-purpose compute, meaning that they may not be suitable for running the
non–edge AI parts of your application.

Today’s high-end MCUs often have some of the features of DSPs, such as SIMD
instructions that can help increase throughput for signal processing tasks—in fact,
some are described as “digital signal controllers” in order to highlight these abilities.
However, dedicated DSPs can still be useful. For example, many smartphones that
include voice assistants (such as the Google Assistant) include a DSP chip in order to
run an always-on keyword-spotting model without hurting battery life.

74 | Chapter 3: The Hardware of Edge AI

https://oreil.ly/nuhBH
https://oreil.ly/uZfax
https://oreil.ly/SGkdC
https://oreil.ly/YpH2r
https://oreil.ly/OzsLd

Heterogeneous Compute
Hardware designers aren’t limited to choosing a single microcontroller for a given
application. It’s actually quite common to combine multiple microprocessors in a
single product. For instance, an edge AI device may include a small, low-power
MCU to run its basic operations—alongside a large, powerful MCU that is used for
occasional signal processing and machine learning workloads.

This type of setup is known as heterogeneous compute, and it’s increasingly impor‐
tant in edge AI because it enables true concurrency: the ability to perform more than
one task at a time. One of the big challenges with heterogeneous compute is deciding
how to split a computational workload between two processors in order to maximize
efficiency. If you can do it right, there are major rewards.

Some architectures for edge AI application, such as those that use cascading models
(see “Cascading flow” on page 283), lend themselves particularly well to heterogene‐
ous compute. The rise of deep learning accelerators (see section “Deep Learning
Accelerators” on page 77) is making it an increasingly important concept.

System-on-Chip
After microcontrollers, the next most common type of edge compute comes in the
form of system-on-chip (SoC) devices. While a microcontroller is a stripped-down,
optimized version of a computer with all the fat trimmed away, SoC devices attempt
to squeeze all of the functionality of an entire traditional computer system into a
single chip.

Unlike microcontrollers, whose software interacts directly with the hardware, SoC
devices run traditional operating systems that abstract away a lot of the hardware
so that developers can focus entirely on their application code. Developers can use
the same tools and environments they use to write server and desktop applications,
including high-level languages like Python (modern microcontrollers are typically
programmed in C or C++).

There are two costs associated with this ease of use: efficiency and complexity. SoCs
are generally a lot less energy efficient than microcontrollers, which limits their fields
of application. They are still an order of magnitude more efficient than traditional
computer systems with separate peripherals, but they’re nowhere near as good as
microcontrollers for keeping energy usage to a minimum. This additional energy
usage may also introduce heat management issues.

The additional complexity represented by an operating system is another burden
on SoC devices. With huge amounts of OS code being run alongside a developer’s
application, it’s more difficult to guarantee reliability in the field.

Processors for Edge AI | 75

SoCs tend to be a lot more powerful than microcontrollers, and they have a lot more
features. Here are some typical stats:

• 64-bit architecture•
• >1 GHz clock speed•
• Multiple processor cores•
• External RAM and flash (generally multiple gigabytes)•
• 2D or 3D graphics processing unit•
• Wireless networking•
• High-performance digital input and output•
• Current draw: hundreds of milliamps at ~5 volts•
• Cost: tens of dollars per unit•

Performance Characteristics

An average SoC can process audio and high-resolution video using
deep learning in near real time.

Despite being far less efficient than microcontrollers, SoCs have been revolutionary.
They allow the power of a formidable general-purpose computer to be deployed in an
extremely small form factor. In the modern world, SoCs are pervasive—they power
our mobile phones, televisions, car entertainment systems, industrial hardware, secu‐
rity systems, IoT gateways, and pretty much anything else that requires flexible
computational power in a small package.

Their power, flexibility, and ease of use makes them especially valuable for edge AI.
Developers can use familiar tools to develop applications that run on SoCs, and they
have enough memory and processing power to run complex algorithms, such as
relatively large deep learning models. There are very few types of edge AI algorithm
that will not run on an SoC. Ease of use makes SoCs a great choice for prototyping
edge AI applications even if the end goal is to move to cheaper or more efficient
hardware.

Well-known SoC products include the Qualcomm Snapdragon and the Broadcom
BCM58712, which is used in the Raspberry Pi development board (mentioned in the
sidebar “Boards and Devices” on page 79). Many popular SoCs are based on Arm
Cortex-A processor cores.

76 | Chapter 3: The Hardware of Edge AI

https://oreil.ly/b0Va-
https://oreil.ly/ZbqES
https://oreil.ly/ZbqES
https://oreil.ly/GyNNz
https://oreil.ly/GyNNz

Embedded Linux

Linux has become a very common choice of operating system for
SoC devices. It’s open source, which means it’s free to use, and
has a lot of community support. Being able to use familiar Unix
development tools makes it easy for those with Unix experience to
work with embedded Linux systems.

Deep Learning Accelerators
Both microcontrollers and SoCs are typically general-purpose computers—they are
designed to be as flexible as possible. However, if you’re willing to sacrifice some flex‐
ibility, it’s possible to design integrated circuits that run certain operations extremely
fast.

With the advent of deep learning (see “Deep learning” on page 106) on embedded
devices, semiconductor companies have started to produce accelerators that can be
paired with microcontrollers and SoCs to allow deep learning models to be run faster
and more efficiently. The mathematics of deep learning is based around linear alge‐
bra, so deep learning accelerators—also known as neural processing units (NPUs)—
are designed to perform linear algebra efficiently.

There are various types of deep learning accelerators with their own trade-offs
between energy use and flexibility. At one end of the spectrum, devices like Syn‐
tiant’s NDP10x series have hardware implementations of specific deep learning model
architectures (we’ll learn more about these later) that can run quickly with incredibly
low energy. Since the algorithm itself is baked into the silicon, these devices are not
very flexible—but they can be extremely efficient.

At the other end of the spectrum, devices based on graphics processing unit (GPU)
technology, like Nvidia’s Jetson and Google’s Coral, offer a huge amount of flexibility
and can run basically any type of deep learning model. The trade-off for this flexibil‐
ity is that they are nowhere near as energy efficient.

Between the two ends of the spectrum are many different types of devices with vary‐
ing degrees of flexibility and efficiency—like Syntiant’s NDP120 or Arm’s Ethos-U55
design.

Some types of accelerator use alternatives to traditional deep learning mathematics.
For example, BrainChip’s Akida, described as a neuromorphic processor, uses spiking
neural networks (see “Compression and optimization” on page 117) to deliver a
unique set of trade-offs, including greater energy efficiency.

Processors for Edge AI | 77

https://oreil.ly/XDxoQ
https://oreil.ly/XDxoQ
https://oreil.ly/MVga8
https://coral.ai/products
https://oreil.ly/Y9ZeL
https://oreil.ly/KS_Dv
https://oreil.ly/JgaIv

Performance Characteristics

Deep learning accelerators tend to be extremely fast—you can
expect enough computational power to process audio and video
in real time. Some devices can even process multiple streams
in parallel.

Generally, deep learning accelerators are paired with either microcontrollers or SoCs.
The conventional processor runs the application logic, and the accelerator runs the
deep learning workload. Many designs combine the microprocessor and accelerator
in a single package and provide special tools to help developers split the processing
between them.

Early deep learning accelerators provided very little freedom of choice with regards to
the types of deep learning models that are supported, but as the field matures devices
are becoming more flexible. We’re still in the very early days, so you can expect big
advances and efficiency gains over time. In the long term, expect absurdly capable
devices with miniscule power budgets—real-time video processing or language tran‐
scription that can run for years on a small battery.

FPGAs and ASICs
For the ultimate performance and efficiency benefits, designing your own processor
circuit is an option. It’s difficult, time consuming, and expensive, so it isn’t something
to be taken lightly, but for certain applications it might make sense.

Field programmable gate arrays, or FPGAs, are silicon integrated circuits that can
be reprogrammed on demand to implement custom hardware designs. They allow
engineers to create a custom processor design that implements a specific algorithm
as efficiently as possible, then load it onto a device for deployment. The designs are
created using special programming languages called hardware description languages,
or HDLs.

Application-specific integrated circuits, or ASICs, are integrated circuits that are
customized for particular applications. Unlike FPGAs, they can’t be reprogrammed—
their logic is permanently written into silicon. You can buy predesigned ASICs
designed for specific purposes, such as Himax’s WE-I Plus, or design your own.

Development with FPGAs is substantially cheaper than with ASICs, but the per-
device cost is higher, as is the power consumption. It’s common for companies to
use FPGAs for prototypes or small production runs and ASICs for high volume.
The engineering cost of creating an ASIC puts them out of reach for the majority
of companies.

78 | Chapter 3: The Hardware of Edge AI

https://oreil.ly/oI4bv

FPGA developer tools are becoming easier to use and more accessible, but they’re
still a relatively niche option in edge AI. Researchers are working on tooling that can
automatically convert deep learning models into efficient FPGA implementations, so
it’s likely that FPGAs will play an increasingly large role in edge AI over time. Here
are some interesting projects in the space at the time of publication:

• Google’s CFU Playground, which helps developers create deep learning accelera‐•
tors using FPGAs

• Tensil.ai, a machine learning model compiler and hardware generator for FPGAs•

Boards and Devices
A processor isn’t much use by itself—it needs to be mounted onto a board along
with the other components that make up a full device—power supply, sensors and
peripherals, and connectors. Most mass-produced edge AI products use custom
printed circuit boards designed for their specific application.

Since these custom boards take time to design and produce, a lot of early engineering
work is done with development boards, also known as dev boards. These are ready-to-
use devices, sold by hardware manufacturers, that feature a given processor along
with everything needed to connect to it and develop software (see Figure 3-6).

Figure 3-6. A typical dev board features a processor, power supply, input and output
pins, connectors, and o!en some sensors that are connected to the processor and ready
to use

Processors for Edge AI | 79

https://oreil.ly/Fhf-9
https://www.tensil.ai

They allow embedded engineers to evaluate various processors for a particular use
case, and to rapidly build prototypes.

The computational requirements of edge AI algorithms means there’s an interplay
between hardware and algorithm choice, which makes development boards extremely
valuable. With access to a few development boards, developers can quickly test
their algorithms on real processors and find the ideal balance between performance,
energy usage, and cost.

While traditionally only used during early prototyping, some manufacturers have
realized the potential benefits of development boards for production use. If you’re
making a small batch of hardware, it may not be worth the extra cost and time to
design a custom printed circuit board—which would only be economical if produced
at large volume. Instead, you might choose to use a predesigned platform such as the
Arduino Portenta, which features an MCU and a flexible set of inputs and outputs
that allow you to easily integrate it into other systems.

These types of devices are available for SoCs and accelerators, too—for example,
Raspberry Pi produce a range of fully integrated single board computers (SBCs) (see
Figure 3-7) based on powerful SoCs, and Nvidia’s Jetson accelerators allow developers
to quickly run code on accelerator hardware. Many of these platforms provide a range
of compatible devices, so you can prototype using a single board computer and then
deploy to a system on module (SOM) designed to integrate into your own hardware
without any code changes.

Figure 3-7. A single board computer includes a processor, memory, power supply, input
and output connectors, network interfaces, and everything else required for plug and
play use

Dev boards are typically just bare circuit boards without any enclosure, so they can’t
be used in the field without at least a bit of design work. If you’d prefer a fully finished
device, industrial IoT gateways place SoCs in rugged enclosures with standard I/O
ports, networking hardware, and power supply. They can be fairly expensive, but

80 | Chapter 3: The Hardware of Edge AI

https://oreil.ly/_ezK6
https://www.raspberrypi.com

they may save time and money versus designing and manufacturing a full piece of
hardware.

The most common type of prebuilt edge AI device—by far—is the smartphone. There
are entire books on integrating AI into smartphone apps, such as Laurence Moroney’s
AI and Machine Learning for On-Device Development (O’Reilly, 2021), so we won’t
be covering that topic here. More within our scope is the use of MCUs and DSPs
to power specific smartphone features, such as digital assistants that wake up when
specific keywords are spotted.

Beyond their integrated edge AI, smartphones can be a handy tool for edge AI
developers who are prototyping applications. Since they are battery powered and have
great connectivity, they can be useful for collecting initial data or testing out early
versions of machine learning models during the initial stages of development, when
proving feasibility is the most important thing.

Edge Servers
At the other end of the spectrum from custom silicon, it’s possible to run conven‐
tional server hardware—the same that might be deployed in a data center—at the
edge of the network. These powerful computers run full-scale server operating sys‐
tems (typically Linux or Windows) and can be treated in the same way as any other
cloud server. If they have access to AI-specific acceleration, it’s likely in the form of
GPUs. Some edge servers are sold in ruggedized form factors that are better suited to
industrial settings (like a factory floor) than their data center dwelling equivalents.

The power of edge servers means that they can provide many of the benefits of
cloud compute while maintaining the security, privacy, and convenience that comes
with keeping data on-site. For some applications, they can provide the best of both
worlds—high-capability hardware, low latency, reduced risk of data leakage, and
economic use of bandwidth.

Another benefit of edge servers is that they can be treated as essentially just another
piece of standard IT infrastructure. This means they can fit neatly into the procedures
and skillsets of an existing IT department. In fact, it wasn’t long ago that all commer‐
cial compute was done with on-premises servers. Edge compute used to be the norm
for every business.

Edge servers have two major downsides: they use huge amounts of energy and they
are very large. If you need vast amounts of compute located conveniently on-site,
these trade-offs can be worth it. However, they are typically limited to fixed locations
such as buildings and factories where there is spare room and a reliable power supply.

If full-sized edge servers feel like overkill for your application (and they proba‐
bly are), Linux SoCs offer a great compromise. As standard Linux boxes, an IT

Processors for Edge AI | 81

https://oreil.ly/7nuWH

department can treat them like any other server—but they are available in tiny,
power-efficient forms.

Multi-Device Architectures
Edge AI applications aren’t always implemented directly on the devices that host
the actual sensors. Sometimes, it makes sense to use a multi-device architecture.
For example, sensors on a fleet of shipping pallets might use low-power radio to
report data back to a gateway device mounted in a truck. The gateway, with less
constraints on energy use and insight into the data from multiple pallets, could run
the sophisticated edge AI logic that makes decisions with the data. Figure 3-8 shows
how this might look.

Figure 3-8. It’s common to see architectures involve multiple devices

Things can get even funkier with heterogeneous compute (see the sidebar “Heteroge‐
neous Compute” on page 75) in the mix. A single device might contain multiple
types of processors: for example, one for running application code and another for
running ML algorithms. A complete system might be composed of many devices,
some with multiple processors, that collect and process data at many different points

82 | Chapter 3: The Hardware of Edge AI

depending on which BLERP benefits are needed. This type of solution can even
involve cloud computation.

A great example of this type of architecture is a smart speaker with a voice assistant.
Typically, they have at least two processors. The first is a low-power, always-on chip
that runs DSP and a machine learning model to listen for wake words without using
too much energy.

The second is an application processor, which is woken up by the always-on chip
when the wake word is detected. The application processor might run a more
sophisticated model to try to catch any false positives that got past the always-on
chip. Together, these two processors can identify wake words without violating user
privacy by streaming private conversations to the cloud.

Once the wake word has been confirmed, the application processor streams the
audio to a cloud server, which performs speech recognition and natural language
processing in order to come up with an appropriate response. The general flow is
shown in Figure 3-9.

Figure 3-9. #e low-power processor aims to catch as many potential keywords as possi‐
ble; the application processor wakes up to evaluate any possible matches and invokes the
cloud web service if a match is con"rmed

When designing a system, don’t be afraid to consider using multiple devices to tackle
some of the trade-offs involved with different device types. Some common situations
where it can be helpful are:

• Monitoring large numbers of individual entities: this can get expensive if high-•
end AI-capable hardware is used on every entity.

• Reducing energy use: sensors are battery powered and need to last a long time.•
• Protecting privacy: sending data directly to a large device or cloud server might•

violate privacy norms.
• Integrating with legacy equipment: existing sensors or gateways might be supple‐•

mented with edge AI devices rather than being replaced.

Processors for Edge AI | 83

Devices and Workloads
It’s important to understand what each type of device is capable of. Table 3-1 provides
a quick reference you can use to break down which types of devices are capable of
processing which types of data. It shows the level of support for each data type on a
given device: Full, Limited, or None.

However, bear in mind that each category is broad, and every individual device is
unique. Not all high-end MCUs are the same. It’s also worth noting that the state of
the art moves fast and that this reference may quickly become outdated!

Table 3-1. Data types and devices
Device type Low-frequency

time series
High-frequency
time series

Audio Low-resolution
image

High-resolution
image

Video

Low-end MCU Limited Limited None None None None
High-end MCU Full Full Full Full Limited Limited
High-end MCU with
accelerator

Full Full Full Full Full Limited

DSP Full Full Full Full Limited Limited
SoC Full Full Full Full Full Full
SoC with accelerator Full Full Full Full Full Full
FPGA/ASIC Full Full Full Full Full Full
Edge server Full Full Full Full Full Full
Cloud Full Full Full Full Full Full

Summary
This chapter has introduced the key hardware that hosts artificial intelligence on the
edge and the sensors that keep it fed with data. In the next chapter, we’ll learn about
the algorithms that make it work.

84 | Chapter 3: The Hardware of Edge AI

CHAPTER 4

Algorithms for Edge AI

There are two main categories of algorithms that are important in edge AI: feature
engineering and artificial intelligence. Both types have numerous subcategories; in
this chapter we’re going to explore a cross-section of them.

The goal is to provide an overview for each algorithm type from an engineering
perspective, highlighting their typical usage, strengths, weaknesses, and suitability for
deployment on edge hardware. This should give you a place to start when planning
real-world projects, which we’ll walk through in the coming chapters.

Feature Engineering
In data science, feature engineering is the process of turning raw data into inputs
usable by the statistical tools we use to describe and model situations and processes.
Feature engineering involves using your domain expertise to understand which parts
of the raw data contain the relevant information, then extracting that signal from the
surrounding noise.

From an edge AI perspective, feature engineering is all about transforming raw sen‐
sor data into usable information. The better your feature engineering, the easier life is
for the AI algorithms that are attempting to interpret it. When working with sensor
data, feature engineering naturally makes use of digital signal processing algorithms.
It can also involve chopping the data into manageable chunks.

85

1 The chunks can be discrete or overlapping, or even have gaps between them.

Working with Data Streams
As we’ve seen, the majority of sensors produce time series data. The goal of an edge
AI application is to take these streams of time series data and make sense of them.

The most common way to manage streams is to chop a time series into chunks, often
called windows, then analyze the chunks one at a time.1 This produces a time series
of results that you can interpret in order to understand what is going on. Figure 4-1
shows how a window is taken from a stream of data.

Figure 4-1. A time series is o!en broken into chunks, called windows, which are ana‐
lyzed one at a time

It takes a certain amount of time to process a single chunk of data—we can call this
the latency of our system. This limits how often we can take and process a window
of data. The rate at which we can capture and process data is known as the frame
rate of a system, often expressed in the number of windows that can be processed per
second. Frames may be sequential or they may overlap, as shown in Figure 4-2.

86 | Chapter 4: Algorithms for Edge AI

Figure 4-2. Depending on the frame rate, windows can potentially overlap; overlapping
is desirable for data that contains events because it increases the chance that an entire
event will fall within a window, rather than being cut short

The lower the latency, the more windows of data can be analyzed in a given period
of time. The more analysis you can do, the more reliable the results. For example,
imagine we are using a machine learning model to recognize a command. If the
windows are too far apart, we might miss critical parts of a spoken command and not
be able to recognize it (see Figure 4-3).

Figure 4-3. If the frame rate is too low, some parts of the signal will not be processed; if
you are trying to detect short-lived events, this might mean that some events are missed

The choice of window size is very important. The larger the window, the longer it
takes to process the data within it. However, larger windows contain more informa‐
tion about the signal—meaning they may make life easier for the signal processing
and AI algorithms being used. The trade-off between window size and frame rate is
an important thing to explore when you are developing a system.

As we’ll see later, there are many different AI algorithms—and some of them are
more sensitive to window size than others. Some algorithms (typically those that
maintain an internal memory of what is occurring in a signal) are able to work well
with very small window sizes, while others require large window sizes in order to
properly parse a signal. Algorithm choice also impacts latency, which also constrains
window size. It’s a complex system of trade-offs between window size, latency, and
algorithm choice.

Windowing also applies to video streams: in this case, each “window” of the video is
a certain number of still images—typically a single one, but some AI algorithms can
potentially analyze several images at the same time.

Feature Engineering | 87

More sophisticated techniques for dealing with streams of data fall into the category
of digital signal processing. These techniques can be combined with windowing in
order to create data that feeds AI algorithms.

Digital Signal Processing Algorithms
There are hundreds of different signal processing algorithms that can help digest the
signals produced by sensors. In this section, we’ll cover some of the DSP algorithms
that are most important for edge AI.

Resampling
All time series signals have a sample rate (also known as a frequency), often described
in terms of the number of data samples per second (Hz). It’s often necessary to
change the sample rate of a signal. For example, you might want to reduce the rate of
a signal (known as downsampling) if it is producing data faster than you can process
it. On the other hand, you may want to increase the rate of a signal (upsampling)
so that it can be conveniently analyzed alongside another signal that has a higher
frequency.

Downsampling works by “throwing away” some of the samples in order to achieve
the target frequency. For example, if you threw away every other frame of a 10
Hz (10 samples per second) signal it would become a 5 Hz signal. However, due
to a phenomenon called aliasing, reducing the frequency in this way can lead to
distortion in the output. To help combat this, signals must have some high-frequency
information removed before they are downsampled. This is achieved using a low-pass
filter, described in the next section.

Upsampling works in the opposite way—new samples are created and inserted to
increase the frequency of a signal. For example, if an extra sample was inserted
after every sample in a 10 Hz signal, it would become a 20 Hz signal. The difficult
part is knowing what to insert! There’s no way to know what would actually have
been happening during the time between two samples, but a technique known as
interpolation can be used to fill in the blanks with an approximation.

In addition to time series, images can also be upsampled and downsampled. In this
case, it’s the spatial resolution (pixels per image) that is being increased or decreased.
Like time series resampling, the resizing of images also requires anti-aliasing or
interpolation techniques.

Both upsampling and downsampling are important, but downsampling is more com‐
monly encountered in edge AI. It’s typical for sensors to produce an output at a set
frequency, leaving it to the developer to downsample and obtain the frequency that
best suits the rest of their signal processing pipeline.

88 | Chapter 4: Algorithms for Edge AI

For edge AI applications, upsampling is mostly useful if you wish to combine
two signals with different frequencies into a single time series. However, this can
also be achieved by downsampling the higher frequency signal, which might be
computationally cheaper.

Resizing and Cropping Images
Different models of image sensors output images with varying sizes and shapes,
and edge AI algorithms (such as deep learning vision models) often require images
of very specific sizes. Cropping and resizing is commonly used to make images
compatible with models and can involve both downsampling and upsampling, as well
as throwing chunks of an image away.

Figure 4-4 shows some common ways that images are resized and cropped to fit a
required input shape.

Figure 4-4. #ree di$erent ways that a rectangular image can be made to "t a square
input shape

Feature Engineering | 89

Filtering
A digital filter is a function that, applied to a time series signal, transforms it in
certain ways. Many different types of filters exist, and they can be very useful in
preparing data for edge AI algorithms.

Low-pass filters are designed to allow low-frequency elements of a signal to pass
through, while removing high-frequency elements. The cuto$ frequency of the filter
describes the frequency beyond which high-frequency signals will be affected, and the
frequency response describes how much those signals will be affected.

High-pass filters are the same thing in reverse, allowing frequencies above a cutoff
frequency to pass, and attenuating (reducing) those below. A band-pass filter com‐
bines the two, allowing frequencies within a certain band but attenuating those
outside of it.

The purpose of filtering in edge AI is to isolate the useful parts of a signal, removing
parts that do not contribute to solving the problem. For example, a speech recogni‐
tion application could use a band-pass filter to allow frequencies in the normal range
of human speech (125 Hz to 8 kHz) while rejecting information in other frequencies.
This could make it easier for a machine learning model to interpret the speech
without being distracted by other information in the signal.

Filtering Noise
All signals from sensors contain some level of noise: random fluctuations in the data
that happen due to slight inaccuracies in measurement. The background hum in
audio recordings, or the speckles in a digital camera photograph taken at night, are
typical examples of noise.

If the noise is present at specific frequencies, which is quite common, filters can be
very useful in removing it. This can make it easier for some AI algorithms to interpret
signals. However, some types of algorithms—such as deep learning models—are
naturally able to cope with noise, so it isn’t always necessary to filter it.

Filters can be applied to any type of data. For example, if a low-pass filter is applied
to an image, it has a blurring or smoothing effect. If a high-pass filter is applied to the
same image, it will “sharpen” details.

One type of low-pass filter is a moving average "lter. Given a time series, it calculates a
moving average of values within a certain window. In addition to smoothing the data,
it has the effect of making a single value represent information from a wide range
of time.

90 | Chapter 4: Algorithms for Edge AI

If several moving averages are calculated and stacked together, each with differing
window lengths, a momentary snapshot of the signal (containing several different
moving averages) contains information about changes in the signal across a window
of time and a number of different frequencies. This can be a helpful technique in
feature engineering, since it means an AI algorithm can observe a broad window of
time using relatively few data points.

Filtering is an extremely common signal processing operation. Many embedded pro‐
cessors provide hardware support for some types of filtering, which reduces latency
and energy usage.

Spectral analysis
A time series signal can be said to be in the time domain, meaning it represents
how a set of variables change over time. Using some common mathematical tools,
it’s possible to transform a time series signal into the frequency domain. The values
obtained through transformation describe how much of the signal lies in various
frequency bands over a range of frequencies—a spectrum.

By slicing a signal into multiple, thin windows and then transforming each window
into the frequency domain, as shown in Figure 4-5, it’s possible to create a map of
how the signal’s frequencies change over time. This map, known as a spectrogram,
serves as a very effective input to machine learning models.

Figure 4-5. #e same clip of audio represented as a waveform in the time domain (top)
and a spectrogram in the frequency domain (bottom)

Feature Engineering | 91

2 One reason for this is that the raw audio shown in Figure 4-5 consists of 44,100 samples, while the equivalent
spectrogram only has 3,960 elements. The smaller input means a smaller model.

3 In image processing, a feature is a particular piece of information about an image, such as the positions of
certain visual structures. The Wikipedia page titled “Feature (computer vision)” lists many common image
features.

Spectrograms are commonly used in real-world applications, especially around audio.
Separating the data into windowed frequency bands allows relatively small and simple
models to interpret it.2 It’s also possible for humans to visually distinguish one word
from another while looking at spectrograms—some people have even learned to read
them.

There are many algorithms that can transform a signal from the time to the frequency
domain, but the most common is the Fourier transform. It’s a very common oper‐
ation, and there’s often hardware support (or at least optimized implementations)
available for performing Fourier transforms on embedded devices.

There are a huge number of algorithms and techniques for digital signal processing
and time series analysis; they’re major fields of engineering and study. Some great
resources on the subjects are:

• #e Scientist and Engineer’s Guide to Digital Signal Processing, by Steven W. Smith•
(California Technical, 1997)

• Practical Time Series Analysis, by Aileen Nielsen (O’Reilly, 2019)•

Image feature detection
A whole subset of signal processing algorithms are concerned with the extraction of
useful features3 from images. These have traditionally been referred to as computer
vision algorithms. Some common examples include:

Edge detection
Used to identify boundaries in an image (see Figure 4-6)

Corner detection
Used to find points in an image that have an interesting two-dimensional
structure

Blob detection
Used to identify regions of an image that have something in common

Ridge detection
Used to identify curves within an image

92 | Chapter 4: Algorithms for Edge AI

https://oreil.ly/-EC-T
https://oreil.ly/jo0UJ
https://oreil.ly/NoZrs

Figure 4-6. Edge detection algorithms "nd boundaries between areas with di$erent
colors or intensities

Image feature detection reduces a big, messy image into a more compact representa‐
tion of the visual structures that are present within it. This can potentially make life
easier for any AI algorithms that are operating downstream.

Feature detection is not always necessary when working with images. Typically, deep
learning models are able to learn their own ways of extracting features, reducing the
utility of preprocessing. However, it’s still common to perform feature detection when
interpreting image data using other types of edge AI algorithm.

The OpenCV project provides a set of libraries for feature detection (and other
image-processing tasks) that will run on most SoC devices. For microcontrollers,
OpenMV provides an open source library of feature detection algorithm implemen‐
tations along with hardware designed to run them.

Combining Features and Sensors
There’s nothing stopping you from combining several different features and signals
as the input to your AI algorithms. For example, you could calculate several moving
averages of a time series over several different windows and pass them all into a
machine learning model together. There are no hard-and-fast rules, so feel free to
experiment and be creative with the way you slice and dice your data. The following
chapters will provide a framework for experimentation.

Going beyond combining features from the same signal, sensor fusion is the concept
of integrating data from multiple sensors together. For example, an edge AI fitness
tracker could combine information from an accelerometer, gyroscope, and heart rate
sensor to try to detect which sport a wearer is playing.

Feature Engineering | 93

https://opencv.org
https://openmv.io

In a more complex edge AI scenario, the sensors don’t even have to be integrated
with the same device. Imagine a smart climate control system that makes use of
temperature and occupancy sensors distributed throughout a building to optimize air
conditioning usage.

There are three categories of sensor fusion:

Complementary
Where multiple sensors combine to deliver a more complete understanding of a
situation than would be possible with a single sensor—for example, the various
sensors on our hypothetical fitness tracker.

Competitive
Where multiple sensors measure the same exact thing in order to reduce the
likelihood of bad measurements—for example, multiple redundant sensors mon‐
itoring the temperature of a critical piece of equipment.

Cooperative
Where information from multiple sensors combines to create a signal that was
not otherwise available—for example, two cameras producing a stereo image that
provides depth information.

The challenge inherent in sensor fusion is how to combine multiple signals that may
even occur at different rates. You should consider the following:

1. Aligning the signals in time. For many algorithms, it’s important that all of the1.
signals we intend to fuse are sampled at the same frequency, and that the values
reflect simultaneous measurements. This can be achieved through resampling—
for example, upsampling a low-frequency signal so that it has the same rate as the
high-frequency signal it is being fused with.

2. Scaling the signals. It’s critical that the signals’ values are on the same scale, so2.
that a signal with typically large values does not overwhelm a signal with typically
smaller ones.

3. Numerically combining the signals. This can be done using simple mathematical3.
operations (addition, multiplication, or averaging) or with more sophisticated
algorithms such as the Kalman filter (covered later)—or simply by concatenating
the data together and passing it into the algorithm as a single matrix.

You can perform sensor fusion before or after other stages of feature engineering. For
an arbitrary example: if you intended to fuse two time series, you might choose to run
a low pass over one of them first, then scale them to the same scale, combine the two
through averaging, and transform the combined values into the frequency domain.
Don’t be afraid to experiment!

94 | Chapter 4: Algorithms for Edge AI

Feature Scaling
A stream of data from a sensor can have a wide range of values. For example, if
the sensor returns measurements as 16-bit unsigned integers, their value could be
anywhere from 0 to 65,535.

Big ranges like this can make things tricky for some AI algorithms. For example, deep
learning models can have a hard time training when their input values have a large
magnitude.

Additionally, it can be hard to get good results from machine learning models when
passing in features that have wildly different scales. The larger values outweigh the
smaller ones, which reduces the benefit of having multiple input features. This is also
a problem for sensor fusion.

To get around the issue, it’s a very good idea to scale your inputs before combining
them or sending them into AI algorithms. A common way to do this is called
normalization. There are a few different varieties of normalization. In the simplest,
known as rescaling, you determine the maximum and minimum values for a specific
feature in a representative sample of your input data (typically using your training
data, if you’re working with machine learning models). You can then calculate the
normalized values using the following formula:

normalized_value = (raw_value - minimum) / (maximum - minimum)

This will provide a value between 0 and 1, which can be conveniently compared and
combined with other normalized values on the same scale.

Some other common scaling methods include mean normalization and standardiza‐
tion. The Wikipedia article “Feature Scaling” provides a general overview.

One thing to note is that the values you encounter in the real world may turn out to
have a different range from those in your training data. To avoid issues, you should
clip any that are out of the expected range.

We now have some serious tools for processing data. In the next section, we’ll explore
the AI algorithms that will help us understand it.

Arti"cial Intelligence Algorithms
There are two ways to think about AI algorithms. One is based on functionality: what
are they designed to do? The other is based on implementation: how do they work?
Both aspects are important. Functionality is critical to the application you are trying
to build, and implementation is important when thinking about your constraints—
which generally means your dataset and the device you will be deploying to.

Arti"cial Intelligence Algorithms | 95

https://oreil.ly/hhzyc

Algorithm Types by Functionality
First up, let’s look at the most important types of algorithm from a functional per‐
spective. Mapping the problem you are trying to solve to these algorithm types is
known as framing, and we’ll be diving deep into framing in Chapter 6.

Classi"cation
Classification algorithms try to solve the problem of distinguishing between various
types, or classes, of things. This could mean:

• A fitness monitor with an accelerometer classifying walking versus running•
• A security system with an image sensor classifying an empty room versus a room•

with a person present
• A wildlife camera classifying four different species of animal•

Figure 4-7 shows a classifier being used to determine whether a forklift truck is idle
or moving, based on data collected by an accelerometer.

Figure 4-7. A classi"er typically outputs a probability distribution including each
possible class

Classification can be categorized in a few different ways, depending on the task:

Binary classi"cation
The input belongs to one of two classes.

Multiclass classi"cation
The input belongs to one of more than two classes.

Multilabel classi"cation
The input belongs to zero or more of any number of classes.

96 | Chapter 4: Algorithms for Edge AI

The most common forms of classification are binary and multiclass. With these
forms of classification, you always need at least two classes. Even if there’s only one
thing you care about (for example, a person in the room), you also need a class that
represents everything that you don’t care about (for instance, rooms that don’t have
people in them). Multilabel classification is comparatively rare.

Regression
Regression algorithms try to come up with numbers. This could mean:

• A smart thermostat that predicts the temperature in an hour’s time•
• A virtual scale that estimates the weight of a food product using a camera•
• A virtual sensor that estimates a motor’s speed of rotation based on its sound•

Virtual sensors, like the latter two examples, are a particularly interesting case of
regression. They can use available sensor data to predict measurements from different
types of sensor—without actually requiring those sensors to be present.

Object detection and segmentation
Object detection algorithms take an image or video and identify the locations of
specific objects within them, often by drawing bounding boxes around them. They
combine classification and regression, identifying specific types of objects and pre‐
dicting their numeric coordinates—as seen in Figure 4-8.

Figure 4-8. A common output for object detection models consists of bounding boxes
drawn around detected objects, each with an individual con"dence score

Arti"cial Intelligence Algorithms | 97

Specialized object detection algorithms exist for particular types of objects. For exam‐
ple, pose estimation models are designed to recognize human body parts and identify
their locations within an image—as shown in Figure 4-9.

Figure 4-9. Pose estimation identi"es key points on a human body, the position of which
can be used as input for other processes

Segmentation algorithms are similar to object detection algorithms, but they classify
images at a pixel level. This results in a segmentation map, as seen in Figure 4-10,
which attempts to label areas of the input with their content.

Figure 4-10. #is street scene has been labeled with a segmentation map. Di$erent areas,
such as people and the road surface, are shown in di$erent shades. A segmentation
algorithm aims to predict which pixels belong to which type of object.

98 | Chapter 4: Algorithms for Edge AI

Here are some example use cases for object detection and segmentation:

• A farm monitor that uses cameras to count the number of animals in a field•
• A home fitness system that gives people feedback on their form during workouts•
• An industrial camera that measures how much of a container is filled with•

product

Anomaly detection
Anomaly detection algorithms recognize when a signal has deviated from its normal
behavior. They are useful in many applications:

• An industrial predictive maintenance system that can recognize when a motor•
has started to break down by its current draw

• A robot vacuum that can identify when it is driving on an unusual surface using•
an accelerometer

• A trail camera that knows when an unknown animal has walked past•

Anomaly detection algorithms are very useful for predictive maintenance. They’re
also very helpful when paired with machine learning models. Many machine learning
models will produce spurious, random results if they are presented with an input that
isn’t in their training set.

To avoid this, an ML model can be paired with an anomaly detection algorithm
that tells it when something is out of distribution so that its spurious results can be
discarded. Some types of models can also be calibrated so that their output represents
a true probability distribution that can be interpreted to recognize when the model is
uncertain.

Clustering
Clustering algorithms try to group inputs by similarity and can recognize when an
input is not similar to what it has seen before. They are often used when an edge
AI device needs to learn from its environment, including for anomaly detection
applications. For example, consider:

• A voice assistant that learns which voice belongs to each of its users•
• A predictive maintenance application that learns a “normal” state of operation•

and can detect deviations from it
• A vending machine that can recommend drinks based on a user’s previous•

choices

Arti"cial Intelligence Algorithms | 99

A clustering algorithm can either learn its clusters on the fly (after deployment) or
have them configured ahead of time.

Dimensionality reduction
Dimensionality reduction algorithms take a signal and produce a representation of it
that contains equivalent information but takes up a lot less space. The representations
of two signals can then be compared to one another easily. Here are some example
applications:

• Compression of audio, to make it cheaper to transmit sounds from a remote•
device

• Fingerprint recognition, ensuring a fingerprint matches the owner of a device•
• Facial recognition, recognizing individual faces in a video feed•

Dimensionality reduction tends to be used alongside other AI algorithms, as opposed
to being used on its own. For example, it can be used in conjunction with a clustering
algorithm to identify similar signals in complex data types, like audio and video.

Transformation
Transformation algorithms take one signal and output another. Here are some
examples:

• Noise-canceling headphones that identify and remove specific noises in a signal•
• A car reversing camera that enhances the image in dark or rainy conditions•
• A speech recognition device that takes an audio signal and outputs a•

transcription

The input and output of transformation algorithms can be extremely different. In the
case of transcription, the input is a stream of audio data and the output is a sequence
of words.

Combining Algorithms

There’s no reason you can’t mix different types of algorithms in the
same application. Later in this section we’ll explore techniques for
combining algorithms (see “Combining algorithms” on page 113).

100 | Chapter 4: Algorithms for Edge AI

4 There’s a well-documented phenomenon known as the “AI effect”, where the moment AI researchers figure
out how to make a computer do a task, critics no longer consider that task representative of intelligence.

Algorithm Types by Implementation
Exploring algorithms by functionality helps us understand what they are used for,
but from an engineering perspective it’s important to get a sense for the different
ways these functionalities can be implemented. There are hundreds of different ways
to build a classification algorithm, for example, resulting from decades of computer
science research. Each method has its own unique strengths and weaknesses that are
amplified by the constraints posed by edge AI hardware.

In the following section, we’ll explore the most important ways that edge AI algo‐
rithms are implemented. Bear in mind that this isn’t an exhaustive list—we’re focused
on edge AI, so we’re focused on technologies that work well on-device.

Conditionals and heuristics
The simplest type of AI algorithms are based on conditional logic: simple if state‐
ments that result in decisions. Let’s look back at the code snippet we explored in
“Artificial Intelligence” on page 6:

current_speed = 10 # In meters per second
distance_from_wall = 50 # In meters
seconds_to_stop = 3 # The minimum time in seconds required to stop the car
safety_buffer = 1 # The safety margin in seconds before hitting the brakes

Calculate how long we’ve got before we hit the wall
seconds_until_crash = distance_from_wall / current_speed

Make sure we apply the brakes if we’re likely to crash soon
if seconds_until_crash < seconds_to_stop + safety_buffer:
 applyBrakes()

This simple algorithm does a basic calculation using some human-defined values
(seconds_to_stop, etc.) and decides whether to apply a car’s brakes. Does this count
as AI? It’s a question that might stimulate debate—but the answer is emphatically yes.4

The common understanding of artificial intelligence is that it’s a quest to create
machines that can think like human beings. The engineering definition is much
more realistic: AI allows computers to do tasks that typically require human intelli‐
gence. In this case, controlling a car’s brakes to avoid a collision is definitely some‐
thing that has typically required human intelligence. It would have been considered
extremely impressive twenty years ago, but automatic braking is a common feature in
modern vehicles.

Arti"cial Intelligence Algorithms | 101

https://oreil.ly/hcR8Q

Before you laugh at the idea that if statements can be artificial
intelligence, consider that decision trees—one of the most popular
and effective categories of machine learning algorithms—are just
if statements under the hood. These days, even deep learning
models can be implemented as binary neural networks, which are
essentially conditional logic. Intelligence comes from the applica‐
tion, not the implementation!

The conditional logic in our car braking algorithm is actually an implementation of
classification. Given an input (the speed of the car and the distance from a wall), the
algorithm classifies the situation into one of two types: safe driving or impending
crash. Conditional logic is naturally used for classification since its output is categori‐
cal; an if statement gives us either one output or another.

Conditional logic is connected to the idea of heuristics. A heuristic is a handcrafted
rule that can be applied to a situation in order to help understand or react to it. For
example, our car braking algorithm uses the heuristic that if we have less than four
seconds before hitting a wall, we should apply the brakes.

Heuristics are designed by human beings using domain knowledge. This domain
knowledge can be built on data that has been collected about a real-world situation.
In that respect, our seemingly simple car braking algorithm might actually represent
some deep, well-researched understanding of the real world. Perhaps the value of
seconds_to_stop was arrived at after millions of dollars’ worth of crash tests and
represents the ideal value for the constant. With this in mind, it’s easy to see how
even an if statement can represent a significant amount of human intelligence and
knowledge, captured and distilled into a simple and elegant piece of code.

Our car braking example is very simple—but when paired with signal processing,
conditional logic can make some quite sophisticated decisions. For example, imagine
you are building a predictive maintenance system that aims to alert workers of the
health of an industrial machine based on the sounds it makes. Perhaps the machine
makes a characteristic high-pitched whine when it is about to break down. If you
capture audio and translate it into the frequency domain using a Fourier transform,
you can use a simple if statement to determine when the whine is happening and let
the workers know.

Beyond if statements, you can use more complex logic to interpret situations based
on known rules. For example, an industrial machine may use a handcoded algorithm
to avoid damage by varying its speed based on measurements of internal temperature
and pressure. The algorithm might take the temperature and pressure and directly
calculate an RPM, using human insight that is captured in the code.

If it works for your situation, conditional logic and other handcoded algorithms can
be amazing. It is easy to understand, easy to debug, and easy to test. There’s no risk

102 | Chapter 4: Algorithms for Edge AI

of unspecified behavior: the code either branches one way or another, and all paths
can be exercised with automated tests. It runs incredibly fast and will work on any
imaginable device.

There are two major downsides of heuristics. First, developing them may require
significant domain knowledge and programming expertise. Domain knowledge is not
always available—for example, a small company might not have the resources to con‐
duct the expensive research necessary to understand the fundamental mathematical
rules of a system. In addition, even given domain knowledge, not everyone has the
expertise required to design and implement a heuristic algorithm in efficient code.

The second big downside is the idea of combinatorial explosion. The more variables
that are present in a situation, the more difficult it is to model with traditional
computer algorithms. A good example of this is the game of chess: there are so
many pieces, and so many possible moves, that deciding what to do next requires a
vast amount of computation. Even the most advanced chess computers built using
conditional logic can easily be beaten by expert human players.

Some edge AI problems are far more complex than games of chess. For example,
imagine trying to handwrite conditional logic that can determine whether a camera
image shows an orange or a banana. With some tricks (“yellow means banana, orange
means orange”) you might succeed for some categories of images—but it would be
impossible to make it generalize beyond the simplest of scenes.

A good rule of thumb for handcoded logic is that the more data values you have to
deal with, the more difficult it is going to be to get a satisfactory solution. Fortunately,
there are plenty of algorithms that can step in when a handcoded approach fails.

Classical machine learning
Machine learning is a special approach to creating algorithms. Where heuristic algo‐
rithms are created by handcoding logic based on known rules, machine learning
algorithms discover their own rules—by exploring large amounts of data.

The following description, taken from the book TinyML, introduces the basic ideas
behind machine learning:

To create a machine learning program, a programmer feeds data into a special kind of
algorithm and lets the algorithm discover the rules. This means that as programmers,
we can create programs that make predictions based on complex data without having
to understand all of the complexity ourselves. The machine learning algorithm builds
a model of the system based on the data we provide, through a process we call training.
The model is a type of computer program. We run data through this model to make
predictions, in a process called inference.

—TinyML (O’Reilly, 2019)

Arti"cial Intelligence Algorithms | 103

Machine learning algorithms can perform all of the functional tasks described earlier
in this chapter, from classification to transformation. The key requirement for using
machine learning is that you have a dataset. This is a large store of data, generally
collected under real-world conditions, that is used to train the model.

Typically, the data needed to train a machine learning model is gathered during the
development process, aggregated from as many sources as possible. As we’ll see in
later chapters, a large and varied dataset is critical for working with edge AI—but
especially machine learning.

Since machine learning depends on large datasets, and because training a machine
learning model is computationally expensive, the training part generally happens
before deployment, with inference happening on the edge. It’s certainly possible to
train machine learning models on-device, but the lack of data combined with the
small amount of compute make it a challenge.

In edge AI, there are two main ways to work with machine learning datasets:

Supervised learning
Where the dataset has been labeled by an expert to assist the machine learning
algorithm in understanding it

Unsupervised learning
Where the algorithm identifies structures in the data without human help

Machine learning has a major dataset-related drawback. ML algorithms depend
entirely on their training data to know how to respond to inputs. As long as they
are receiving inputs that are similar to their training data, they should work well.
However, if they receive an input that is significantly dissimilar from their training
dataset—known as an out-of-distribution input—they will produce an output that is
completely useless.

The tricky part is that there is no obvious way of telling, from the output, that an
input was out of distribution. This means that there’s always a risk that a model is
providing useless predictions. Avoiding this problem is a core concern when working
with machine learning.

There are many different types of machine learning algorithms. Classical machine
learning encompasses the vast majority of them used in practice, with the major
exception of deep learning (which we’ll explore in the next section).

104 | Chapter 4: Algorithms for Edge AI

Interpretability and Explainability
When a machine learning model makes a prediction, it’s great if we can also under‐
stand why it made that particular prediction—as opposed to a different one. The
property of making human-comprehensible decisions is known as interpretability or
explainability.

Some machine learning algorithms are more interpretable than others. Whether this
is important or not depends on your use case. For example, if a machine learning
model is being used to assist with medical diagnosis, doctors may not trust it if it can’t
explain its predictions.

Interpretable algorithms are easier to work with, since debugging them is straightfor‐
ward—if they produce an incorrect output, you can directly understand why and
attempt to address it.

Here are some of the most useful types of classical ML algorithms for edge AI. The
title indicates whether they are supervised or unsupervised algorithms:

Regression analysis (supervised)
Learns the mathematical relationships between input and output to predict a
continuous value. Easy to train, fast to run, low data requirements, and highly
interpretable, but can only learn simple systems.

Logistic regression (supervised)
A classification-oriented type of regression analysis, logistic regression learns the
relationship between input values and categories of output—for relatively simple
systems.

Support vector machine (supervised)
Uses fancy mathematics to learn much more complex relationships than basic
regression analysis. Low data requirements, fast to run, can learn complex sys‐
tems, but difficult to train and low interpretability.

Decision trees and random forests (supervised)
Uses an iterative process to construct a series of if statements that predict an
output category or value. Easy to train, fast to run, highly interpretable, can learn
complex systems but may require a lot of training data.

Kalman "lter (supervised)
Predicts the next datapoint given a history of measurements. Can factor in mul‐
tiple variables to improve precision. Often trained on-device, low data require‐
ments, fast to run, easy to interpret, but can only model relatively simple systems.

Arti"cial Intelligence Algorithms | 105

Nearest neighbors (unsupervised)
Classifies data by how similar it is to known data points. Often trained on-device,
low data requirements, easy to interpret, but can only model relatively simple
systems and can be slow with lots of data points.

Clustering (unsupervised)
Learns to group inputs by similarity but does not require labels. Often trained
on-device, low data requirements, fast to run, easy to interpret, but can only
model relatively simple systems.

Classical ML algorithms are an incredible set of tools for interpreting the output
of your feature engineering pipeline and making decisions with data. They cover
the spectrum from highly efficient to highly flexible, and they can perform many
functional tasks. Another major benefit is that they tend to be very explainable—it’s
easy to understand how they are making their decisions. And depending on the
algorithm, the data requirements can be quite low (deep learning typically requires
very large datasets).

The diverse pool of classical ML algorithms (there are literally hundreds) are both a
blessing and a curse for edge AI. On the one hand, there are algorithms well suited
to many different situations, which makes it possible to find one that is—theoreti‐
cally—ideal for a particular use case. On the other hand, the large constellation of
algorithms can be challenging to explore.

While libraries like scikit-learn make it easy to try out many different algorithms,
there’s an art and a science to tuning each one to perform optimally, and to interpret‐
ing their results. In addition, if you’re hoping to deploy to a microcontroller, you may
have to write your own efficient implementation of an algorithm—there are not many
open source versions available yet.

A major downside of classical ML algorithms is that they run into a relatively low
ceiling in terms of complexity of the systems they can model. This means that to get
the best results, they often have to be paired with heavy feature engineering—which
can be complex to design and computationally costly. Even with feature engineering,
there are some tasks—such as the classification of image data—where classical ML
algorithms just don’t perform well.

That said, classical ML algorithms are a fantastic set of tools for making on-device
decisions. But if you hit their limitations, deep learning might help.

Deep learning
Deep learning is a type of machine learning that focuses on neural networks. These
have proven such an effective tool that deep learning has grown into a gigantic field,
with deep neural networks being applied to many types of application.

106 | Chapter 4: Algorithms for Edge AI

https://oreil.ly/EI2MV

This book focuses on the important properties of deep learn‐
ing algorithms from an engineering perspective. The underlying
mechanics of deep learning are interesting, but they’re not required
knowledge for building an edge AI product. Using modern tools,
any engineer can deploy deep learning models without a formal
background in machine learning. We’ll share some of the tools for
doing that in the tutorial chapters later on.

Deep learning shares the same principles as classical ML. A dataset is used to train
a model, which can be implemented on a device to perform inference. There isn’t
anything magical about a model—it’s just a combination of an algorithm and a
collection of numbers that are fed into it, along with the model’s input, in order to
produce the desired output.

The numbers in the model are called weights, or parameters, and they’re generated
during the training process. The term neural network refers to the way that the model
combines its input with its parameters, which was inspired by the way neurons in an
animal brain connect to one another.

Many of the most mind-blowing feats of AI engineering that we’ve seen over the past
decade have made use of deep learning models. Here are some popular highlights:

• AlphaGo, a computer program that used deep learning to beat the best players at•
Go, an ancient game once thought impossible for computers to master

• GPT-3, a model that can generate written language that is indistinguishable from•
human writing

• Fusion reactor control, using deep learning to control the shape of plasma within•
a fusion reactor

• DALL•E, a model that can generate realistic images and abstract art based on text•
prompts

• GitHub Copilot, software that assists software engineers by automatically writing•
code

Beyond the fancy stuff, deep learning excels at all of the tasks in our subsections of
algorithm types (see “Algorithm Types by Functionality” on page 96). It has proven
to be flexible, adaptable, and an incredibly useful tool in allowing computers to
understand and influence the world.

Deep learning models are effective because they work as universal function approxi‐
mators. It’s been mathematically proven that, as long as you can describe something
as a continuous function, a deep learning network can model it. This basically means
that for any dataset that shows various inputs and desired outputs, there’s a deep
learning model out there that can convert one into the other.

Arti"cial Intelligence Algorithms | 107

https://oreil.ly/ynHNq
https://oreil.ly/LZOWt
https://oreil.ly/fADs3
https://oreil.ly/7r9_5
https://oreil.ly/Gw5gq
https://copilot.github.com
https://oreil.ly/4xX1m

A really exciting result of this ability is that during training, deep learning models
can figure out how to do their own feature engineering. If a special transformation
is needed to help interpret the data, a deep learning model can potentially learn how
to do it. This doesn’t make feature engineering obsolete, but it definitely reduces the
burden on the developer to get things exactly right.

The reason deep learning models are so good at approximating functions is that they
can have very large numbers of parameters. With each parameter, the model gets a
little bit more flexibility, allowing it to describe a slightly more complex function.

This property leads to the two major drawbacks of deep learning models. First,
finding the ideal values for all of these parameters is a difficult process. It involves
training a model with lots of data. Data is often a rare and precious resource, difficult
and expensive to obtain, so this can be a major obstacle. Fortunately, there are many
techniques that can help make the most of limited data—we’ll cover them later in the
book.

The second major drawback is the risk of over"tting. Overfitting is when a machine
learning model learns a dataset too well. Instead of modeling the general rules that
lead from outputs to inputs in its dataset, it memorizes the dataset completely. This
means that it won’t perform well on data that it hasn’t seen before.

Overfitting is a risk with all machine learning models, but it’s especially a challenge
for deep learning models because they can have so many parameters. Each additional
parameter provides the model with slightly more ability to memorize its dataset.

There are a lot of different types of deep learning models. Here are some of the most
important for edge AI:

Fully connected models
The simplest type of deep learning model, fully connected models consist of
stacked layers of neurons. The input of a fully connected model is fed directly in
as a long series of numbers. Fully connected models are capable of learning any
function, but they are mostly blind to spatial relationships in their inputs (for
example, which values in an input are next to one another).

In an embedded context, this means they work well for discrete values (for
example, if the input features are a set of statistics about a time series) but they
aren’t as great with raw time series or image data.

Fully connected models are very well supported on embedded devices, with
hardware and software optimizations commonly available.

108 | Chapter 4: Algorithms for Edge AI

Convolutional models
Convolutional models are designed to make use of the spatial information in
their inputs. For example, they can learn to recognize shapes in images, or the
structures of signals within time series sensor data. This makes them extremely
useful in embedded applications since spatial information is important in so
many of the signals we deal with.

Like fully connected models, convolutional models are very well supported on
embedded devices.

Sequence models
Sequence models were designed originally for use on sequences of data, like
time series signals or even written language. To help them recognize long-term
patterns in time series, they often include some internal “memory.”

It turns out that sequence models are very flexible, and there’s increasing evi‐
dence that they can be very effective on any signal where spatial information is
important. Many people believe they will eventually take over from convolutional
models.

Sequence models are currently less well supported than convolutional and fully
connected models on embedded devices; there are few open source libraries that
provide optimized implementations for them. This is more due to inertia than
technical limitations, so the situation is likely to change over the next couple of
years.

Embedding models
An embedding model is a pretrained deep learning model that is designed for
dimensionality reduction—it takes a big, messy input and represents it as a
smaller set of numbers that describes it within a certain context. They are used in
the same way a signal processing algorithm would be: they produce features that
can be interpreted by another ML model.

Embedding models are available for many tasks, from image processing (turning
a big messy image into a numeric description of its contents) to speech recogni‐
tion (turning raw audio into a numeric description of the vocal sounds within it).

The most common use for embedding models is transfer learning, which is a way
of reducing the amount of data required to train a model. We’ll learn more about
that later.

Embedding models can be fully connected, convolutional, or sequence models,
so their support on embedded devices varies—but convolutional embedding
models are the most common.

Arti"cial Intelligence Algorithms | 109

Model Architectures
Deep learning models are flexible and modular—they are composed of layers and
operations (also known as ops) that can be stacked and combined in an infinite
number of ways.

Different arrangements are known as architectures, and many architectures have been
designed that are optimized for different tasks. You’ll often see references to deep
learning model architectures in online articles and scientific literature.

Some noteworthy architectures for edge AI include:

• MobileNet and EfficientNet, families of architectures designed to run efficiently•
on mobile devices

• YOLO, a family of architectures designed to perform object detection•
• Transformers, a family of architectures designed to translate between sequences•

of data

It’s only in recent years that deep learning models have been brought to edge AI
hardware. Since they are often large and involve significant computation to run, it’s
been the advent of high-end MCUs and SoCs with relatively powerful processors and
large amounts of ROM and RAM that have enabled them to make the leap.

It’s possible to run a small deep learning model using just a few kilobytes of memory,
but for models that do more complex things—from audio classification to object
detection—it is common for models to require dozens or hundreds of kilobytes as a
minimum.

This is already impressive since traditional server-side machine learning models
can be anywhere from tens of megabytes to several terabytes in size. Using clever
optimization, and by limiting scope, embedded models can be made much smaller—
we’ll introduce some of these techniques shortly.

There are various ways to run a deep learning model on an embedded device. Here’s a
quick summary:

Interpreters
Deep learning interpreters, like TensorFlow Lite for Microcontrollers, use an
interpreter to execute a model that is stored as a file. They are flexible and easy to
work with, but they come with some computational and memory overhead, and
they don’t support every type of model.

Code generation
Code generation tools, like EON, take a trained deep learning model and trans‐
late it into optimized embedded source code. This is more efficient than an

110 | Chapter 4: Algorithms for Edge AI

https://oreil.ly/4Q7xN
https://oreil.ly/SmT-s

interpreter-based approach, and the code is human-readable so it can still be
debugged, but it still doesn’t support every possible model type.

Compilers
Deep learning compilers, like microTVM, take a trained model and generate
optimized bytecode that can be included into embedded applications. The imple‐
mentation they generate can be highly efficient, but it’s not as easy to debug and
maintain as actual source code. They can support model types not explicitly sup‐
ported by interpreters and code generation. It’s common for embedded hardware
vendors to provide custom interpreters or compilers to assist with running deep
learning models on their hardware.

Handcoding
It’s possible to implement a deep learning network by writing code by hand,
incorporating the parameter values from a trained model. This is a difficult and
time-consuming process, but it allows full control over optimization and allows
you to support any model type.

The environment for deploying deep learning models is very different between SoCs
and microcontrollers. Since SoCs run full, modern operating systems, they also
support most of the tools that are used to run deep learning models on servers. This
means that pretty much any type of model will run on a Linux SoC. That said, the
latency of the model will vary depending on the architecture of the model and the
SoC’s processor.

There are also interpreters designed specifically for SoC devices. For example,
TensorFlow Lite provides tools that allow deep learning models to be run more
efficiently on SoCs—typically those that are used in smartphones. They include
optimized implementations of deep learning operations that make use of features
available in some SoCs, such as GPUs.

The SoCs that have integrated deep learning accelerators are a special case. Typically,
the hardware vendor will provide a special compiler or interpreter that allows the
model to make use of hardware acceleration. Accelerators typically only accelerate
certain operations, so the amount of speedup depends on the architecture of the
model.

Since microcontrollers don’t run full operating systems, the standard tools for run‐
ning deep learning models aren’t available. Instead, frameworks like TensorFlow Lite
for Microcontrollers provide a baseline of model support. They tend to lag behind the
standard tools a little in terms of operator support, meaning they will not run some
model architectures.

Arti"cial Intelligence Algorithms | 111

https://oreil.ly/0JTaR
https://oreil.ly/pNs5W

Operators and Kernels

In edge machine learning, an operator, or kernel, is an implemen‐
tation of a particular mathematical operation used to run a deep
learning model. These are overloaded terms with different mean‐
ings in other fields, including elsewhere in deep learning.

Typical high-end microcontrollers have hardware features such as SIMD instruc‐
tions that will drastically improve the performance of deep learning models. Tensor‐
Flow Lite for Microcontrollers includes optimized implementations of operators,
making use of these instructions, for several vendors. Like with SoCs, the vendors
of microcontroller-based hardware accelerators often provide custom compilers or
interpreters that allow models to run on their hardware.

The core advantages of deep learning are its flexibility, reduced requirements for
feature engineering, and ability to make use of large amounts of data due to the high
parameter counts of models. Deep learning is noteworthy for its ability to approxi‐
mate complex systems, going beyond simple prediction to perform tasks such as
generating art and accurately recognizing objects in images. Deep learning provides a
lot of freedom, and researchers have only just begun to explore its potential.

The core disadvantages are its high data requirements, its propensity toward overfit‐
ting, the relatively large size and computational complexity of deep learning models,
and the complexity of the training process. Additionally, deep learning models can
be hard to interpret—it can be challenging to explain why they make one prediction
over another. That said, there are tools and techniques that help mitigate most of
these drawbacks.

Why Not Always Use Deep Learning?
Since deep learning is so capable, you may wonder why we would use any other
machine learning algorithms. Deep learning is a powerful general-purpose tool that
can model pretty much any relationship between input and output variables. How‐
ever, just because it can doesn’t mean it’s always the best at it. Depending on the
situation, classical ML algorithms can outperform deep learning in terms of:

Explainability
Nothing beats the interpretability of a decision tree, if your use case allows it.

E&ciency
Classical ML algorithms are typically much easier to compute than deep learning
models.

Portability
Since they are simpler, classical ML algorithms can be deployed to the most basic
devices (such as low-end MCUs).

112 | Chapter 4: Algorithms for Edge AI

E$ectiveness
Some classical algorithms work better than deep learning in certain situations,
especially when there is not much data available.

On-device training
Deep learning training is difficult to perform on-device, while some classical
algorithms are easy to train in the field.

It all comes down to your individual use case. That said, if you were only going to
take a deep dive into one technique for edge AI algorithm development, then it would
probably make sense to choose deep learning.

Combining algorithms
A single edge AI application can make use of multiple different types of algorithms.
Here are some typical ways this is done:

Ensembles
An ensemble is a collection of machine learning models that are fed the same
input. Their outputs are combined mathematically in order to make a decision.
Since every ML model has its own strengths and weaknesses, an ensemble of
models is often more accurate together than its constituent parts. The downside
of ensembles is the additional complexity, memory, and compute required to
store and run multiple models.

Cascades
A cascade is a set of ML models that are run in sequence. For example, in
a cellphone with a built-in digital assistant, a small, lightweight model is run
constantly to detect any signs of human speech. Once speech is detected, a larger,
more computationally expensive model is woken up in order to determine what
was said.

Cascades are a great way of saving energy since they allow you to avoid unnec‐
essary computation. In a heterogeneous compute environment, where multiple
types of processor are available, the individual components of a cascade can even
be run on different processors.

Feature extractors
As we learned earlier, embedding models take a high-dimensional input, like
an image, and distill it down to a set of numbers that describe its content. The
output of an embedding model can be fed into another model, designed to make
predictions based on what the embedding model describes about the original
input. In this case, the embedding model is being used as a feature extractor.

If a pretrained embedding model is used, this technique—known as transfer
learning—can massively reduce the amount of data required to train a model.

Arti"cial Intelligence Algorithms | 113

Instead of learning how to interpret the original high-dimensional input, the
model only needs to learn how to interpret the simple output returned by the
feature extractor.

For example, imagine you wish to train a model to identify different species of
birds from photographs. Rather than train an entire model from scratch, you
could use the output of a pretrained feature extractor as the input to your model.
This could reduce the amount of data and training time required in order to get
good results.

Many pretrained deep learning feature extractors are available under open source
licenses. They are commonly used for image related tasks, since large public
image datasets are available for pretraining.

Multimodal models
A multimodal model is a single model that takes inputs of multiple types of data
simultaneously. For example, a multimodal model might accept both audio and
accelerometer data together. This technique can be used as a mechanism for
sensor fusion, using a single model to combine disparate data types.

Postprocessing algorithms
On edge AI devices, we typically work with streams of data—for example, a continu‐
ous time series of audio data. When we run an edge AI algorithm on that stream of
data, it will produce a second time series that represents the outputs of the algorithm
over time.

This poses a problem. How do we interpret this second time series in order to
decide? For example, imagine we are analyzing audio to detect when somebody says a
keyword so that we can trigger some functionality on a product. What we really want
to know is when did we hear the keyword?

Unfortunately, the time series of inference results is not ideal for this purpose. First, it
contains many events that do not represent a keyword being detected. To clean these
up, we can ignore any whose confidence that a keyword was spotted is below a certain
threshold.

Second, the model may occasionally (and briefly) detect a keyword when a keyword
was not actually spoken. We need to filter out these blips to clean up our output. This
is equivalent to running a low-pass filter on the time series.

Finally, instead of telling us each time the keyword was spoken, the raw time series
tells us at a set rate whether the keyword is currently being spoken. This means we
need to do some output gating to get the information we really want.

114 | Chapter 4: Algorithms for Edge AI

After cleaning up the raw output, we now have a signal that tells us when a keyword
was actually spotted. This is something we can use in our application logic to control
our device.

This sort of postprocessing is extremely common in edge AI applications. The
exact postprocessing algorithm used, and its particular parameters—for example, the
threshold for considering something a match—can be determined on a case-by-case
basis. Tools like Edge Impulse’s Performance Calibration (covered in “Performance
Calibration” on page 337) allow developers to automate discovery of the ideal post‐
processing algorithm for their application.

Fail-safe design
There are many things that can go wrong with an edge AI application, so it’s critical
that there are always safeguards in place to protect against unexpected issues.

For example, imagine a wildlife camera that uses a deep learning model to identify
when an animal of interest has been photographed and uploads the animal’s image
via a satellite connection. Under normal operation, it may send a few photographs a
day—not costing very much in data fees.

But out in the field, a physical problem with the camera hardware—such as dirt or
reflections on the lens—might result in images being taken that are very different
from those in the original training dataset. These out-of-distribution images could
lead to unspecified behavior from the deep learning model—which could mean that
the model begins to constantly report that the animal of interest is present.

These false positives, caused by out-of-distribution inputs, might result in hundreds
of images being uploaded via satellite connection. Not only would the camera be
rendered useless, but it could potentially cost large amounts in data transfer fees.

In real-world applications, there’s no way to avoid things like damage to sensors or
unexpected behavior from algorithms. Instead, it’s important that you design your
application to be fail-safe. This means that if part of the system were to fail, the
application would minimize harm.

The best way to do this varies between situations. In the case of a wildlife camera,
it could be wise to build in a rate limit that kicks in if an unreasonable number of
photographs are being uploaded. In another application, you might shut a system
down entirely rather than risk harm being caused.

Building fail-safe applications is an important part of responsible AI—and good
engineering in general. It is something to think about from the very beginning of any
project.

Arti"cial Intelligence Algorithms | 115

Optimization for Edge Devices
With machine learning models, and particularly deep learning models, there’s often
a trade-off between how well a model performs its task and how much memory and
compute the model requires.

This trade-off is extremely important for edge AI. Edge devices are typically compu‐
tationally constrained. They are designed to minimize cost and energy usage, not to
maximize compute. At the same time, they are expected to deal with real-time sensor
data, often at high frequencies, and potentially react in real time to events in the data
stream.

Larger machine learning models tend to be better at complex tasks, since they
have more capacity—which is helpful for learning complicated relationships between
inputs and outputs. This extra capacity means they may require more ROM and
RAM, and it also means they take longer to compute. The additional compute time
results in higher power consumption, as we’ll learn in “Duty cycle” on page 333.

Finding the correct balance between task performance and computational performance
is essential in any application. It’s a matter of juggling constraints. On the one hand,
there’s a minimum standard for performance at a given task. On the other hand,
hardware choices create hard limits on available memory, latency, and energy.

Managing this trade-off is one of the difficult—but fascinating—parts of edge AI
development. It’s part of what makes the field uniquely interesting, and why tools
for things like AutoML (which we’ll learn about in “Automated machine learning
(AutoML)” on page 150) need to be redesigned for edge AI.

Here are some of the factors that can help us minimize compute requirements while
maximizing task performance.

Choice of algorithm
Every edge AI algorithm has a slightly different profile of memory usage and com‐
putational complexity. The constraints of your target hardware should inform your
choice of algorithm. Typically, classical ML algorithms are smaller and more efficient
than deep learning algorithms.

However, it’s commonly the case that feature engineering algorithms use vastly more
compute than either, making the choice between classical ML and deep learning less
significant. The exception to this rule is the analysis of image data, which typically
requires little feature engineering but relatively large deep learning models.

116 | Chapter 4: Algorithms for Edge AI

Here are some common ways to reduce the latency and memory required by your
choice of algorithms:

• Reduce the complexity of feature engineering. More math means higher latency.•
• Reduce the amount of data that reaches the AI algorithm.•
• Use classical ML instead of deep learning.•
• Trade complexity between feature engineering and machine learning model,•

depending on which runs more efficiently on your device.
• Reduce the size (the number of weights and layers) of deep learning models.•
• Choose model types that have accelerator support on your device of choice.•

Compression and optimization
There are many optimization techniques designed to reduce the amount of data
and computation required by a given algorithm. Here are some of the most
important types:

Quantization
One way to reduce the amount of memory and computation required by an
algorithm or model is to decrease the precision of its numeric representations. As
mentioned in “How Are Values Represented?” on page 58, there are many differ‐
ent ways to represent numbers in computation—some that have more precision
than others.

Quantization is the process of taking a set of values and reducing their precision
while preserving the important information they contain. It can be done for
both signal processing algorithms and ML models. It’s especially useful for deep
learning models, which by default tend to have 32-bit floating-point weights.
By reducing the weights to 8-bit integers you can reduce a model to 1/4th its
size—typically without much reduction in accuracy.

Another advantage of quantization is that the code to perform integer math is
faster and more portable than the code for floating-point math. This means that
quantization results in a significant speedup on many devices, and that quantized
algorithms will run on devices that lack floating-point units.

Quantization is a lossy optimization, meaning that it typically reduces the task
performance of the algorithm. In ML models, this can be mitigated by training at
a lower precision so that the model learns to compensate.

Arti"cial Intelligence Algorithms | 117

Operator fusion
In operator fusion, a computation-aware algorithm is used to inspect the oper‐
ators that are used when a deep learning model is run. When certain groups
of operators are used together, it’s possible to replace them with a single fused
implementation that has been written to maximize computational efficiency.

Operator fusion is a lossless technique: it improves computational performance
without causing any reduction in task performance. The downside is that fused
implementations are only available for certain combinations of operators, so its
impact depends greatly on the architecture of a model.

Pruning
Pruning is a lossy technique applied during the training of a deep learning
model. It forces many of the model’s weights to have a value of zero, creating
what is known as a sparse model. In theory, this should allow for faster computa‐
tion since any multiplication involving a zero weight will invariably result in a
zero.

However, at this point in time there is very little edge AI hardware and software
designed to take advantage of sparse weights. This will change over the next few
years, but for now the main benefit of pruning is that sparse models are easier
to compress, due to their large blocks of identical values. This is helpful when
models need to be sent over the air.

Knowledge distillation
Knowledge distillation is another lossy deep learning training technique that ena‐
bles a large “teacher” model to help train a smaller “student” model to reproduce
its functionality. It takes advantage of the fact that there is typically a lot of
redundancy in the weights of a deep learning model, meaning that it’s possible to
find an equivalent model that is smaller but performs almost as well.

Knowledge distillation is a bit fiddly, so it’s not yet a common technique—but it’s
likely to become a best practice over the next few years.

Binary neural networks (BNNs)
BNNs are deep learning models where every weight is a single binary number.
Since binary arithmetic is extremely fast on computers, binary neural networks
can be very efficient to run. However, they are a relatively new technology and
the tooling for training and running inference with them is not yet in broad use.
Binarization is similar to quantization and is therefore a lossy technique.

Spiking neural networks (SNNs)
A spiking neural network is an artificial neural network where the signals
transmitted through the network have a time component. As “neuromorphic”
systems, they are designed to more closely resemble the way biological neurons

118 | Chapter 4: Algorithms for Edge AI

work. They have different trade-offs compared to traditional deep learning mod‐
els, offering improved performance and efficiency for some tasks. However, they
require specialized hardware (in the form of an accelerator) in order to offer a
benefit.

SNNs can either be trained directly or be created from a traditional deep learning
model in a conversion process. This process may be lossy.

Model compression has two major downsides. The first is that running compressed
models often requires specific software, hardware, or a combination of the two. This
can limit the devices that a compressed model can be deployed to.

The second downside is more dangerous. The lossy nature of compression often
results in a subtle degradation of a model’s predictive performance that can be diffi‐
cult to spot. The reduction in precision can bias a model to perform well in common
cases, but to lose performance in the “long tail” of less frequently encountered inputs.

This problem can amplify the biases inherent in datasets and algorithms. For exam‐
ple, if a dataset collected for training an ML-powered health wearable contains fewer
examples from people in minority groups, model compression may lead to degraded
performance for people in these groups. Since they are a minority, the impact on the
model’s overall accuracy might be hard to spot. This makes it extremely important
to evaluate your system’s performance on every subgroup within your dataset (see
“Collecting Metadata” on page 223).

There are two excellent scientific papers on this topic from researcher Sara Hooker et
al. One is “What Do Compressed Deep Neural Networks Forget?”, and the other is
“Characterising Bias in Compressed Models”.

On-Device Training
In the vast majority of cases, machine learning models used in edge AI are trained
before being deployed to a device. Training requires large amounts of data, typically
annotated with labels, and involves significant computation—the equivalent of hun‐
dreds or thousands of inferences per data point. This limits the utility of on-device
training, since by nature edge AI applications are subject to severe constraints in
memory, compute, energy, and connectivity.

That said, there are a few scenarios where on-device training makes sense. Here’s
an overview:

Predictive maintenance
A common example of on-device training happens in predictive maintenance
when a machine is being monitored to determine whether it is functioning
normally. A small on-device model can be trained with data that represents a

Arti"cial Intelligence Algorithms | 119

https://oreil.ly/v3Bvl
https://oreil.ly/V_cTk

5 An embedding can be thought of as a coordinate in a multidimensional space. The Euclidean distance
between two embeddings is the distance between the two coordinates.

“normal” state. If the machine’s signals start to deviate from that baseline, the
application can notice and take action.

This use case is only possible when it can be assumed that abnormal signals
are rare, and that at any given moment the machine is likely to be operating
normally. This allows the device to treat the data being collected as having an
implicit “normal” label. If abnormal states were common, it would be impossible
to make assumptions about the state at any given moment.

Personalization
Another example where on-device training makes sense is when a user is asked
to deliberately provide labels. For example, some smartphones use facial recogni‐
tion as a security method. When the user sets up the device, they are asked to
enroll images of their face. A numeric representation of these facial images is
stored.

These types of applications tend to use carefully designed embedding models
that convert raw data into compact numeric representations of their content.
The embeddings are designed in such a way that the Euclidean distance between
two embeddings5 corresponds to the similarity between them. In our face recog‐
nition example, this makes it easy to determine whether a new face matches
the representations stored during setup: the distance between the new face and
the enrolled face is calculated, and if it is sufficiently close then the faces are
considered the same.

This form of personalization works well because, typically, the algorithm used to
determine embedding similarity can be very simple; either a distance calculation
or a nearest neighbors algorithm. The embedding model has done all the hard
work.

Implicit association
A further example of on-device training is when labels are available by associ‐
ation. For example, battery management features such as Apple’s Optimized
Battery Charging train models on-device to predict what time a user is likely to
be using their device. One way to do this would be to train a forecasting model
to output a probability of usage at a specific time, given a log of the previous few
hours’ usage.

In this case, it’s easy to collect and label training data on a single device. Usage
logs are collected in the background, and labels are applied according to some
metric (such as whether the screen was activated). The implicit association

120 | Chapter 4: Algorithms for Edge AI

https://oreil.ly/OzgdM
https://oreil.ly/OzgdM

between time and log content allow the data to be labeled. A simple model can
then be trained.

Federated learning
One of the obstacles to training on-device is a lack of training data. In addition,
on-device data is often private and users are not comfortable with it being
transmitted. Federated learning is a way of training models in a distributed
manner, across many devices, while preserving privacy. Instead of raw data being
transmitted, partially trained models are passed around between devices (or
between each device and a central server). The partially trained models can be
combined and distributed back to devices once they are ready.

Federated learning often seems attractive since it appears to provide a way for
models to learn and improve while in the field. However, it has some serious
limitations. It is computationally expensive and requires large amounts of data
transfer, which runs counter to the core benefits of edge AI. The training process
is very complex and requires both on-device and server-side components, which
increases project risk.

Since data is not stored globally, there is no way to validate that the trained
model is performing well across the entire deployment. The fact that models are
uploaded from local devices presents a vector for security attacks. Finally, and
most importantly, it does not solve the problem of labels. If labeled data is not
available, federated learning is useless.

Over-the-air updates
Although not actually an on-device training technique, the most common way
to update models in the field is via over-the-air updates. A new model can be
trained in the lab, using data collected from the field, and distributed to devices
via firmware updates.

This depends on network communication, and it doesn’t solve the problem of
obtaining labeled data, but it’s the most common way to keep models up to date
over time.

Summary
We’ve now learned about the key AI algorithms that make edge AI possible, along
with the hardware that runs them. The next chapter will walk through the tools—and
the skills—that are needed to bring everything together.

Summary | 121

CHAPTER 5

Tools and Expertise

The edge AI development workflow includes many highly technical tasks, and most
projects will require skills and expertise pooled by a team of experts.

The first section of this chapter is a guide to building the team that will turn your
ideas into reality. Even if you’re still at an early stage, it’s helpful to understand the
types of skills that will be important and the challenges you can expect to encounter.
AI is all about automating human insights, so it’s vital that you have the right insights
on your team.

The second part of the chapter, starting with “Tools of the Trade” on page 136, is
designed to help get you to grips with the key technical tools for working with edge
AI. If you’re still early in your product development journey, you may want to skim
over some of the details—and then use this chapter as a reference once you’ve come
up with some concrete ideas and are ready to start.

Building a Team for AI at the Edge
Edge AI is a truly complete technology. As a topic, it makes use of knowledge from
everything from the physical properties of semiconductor electronics all the way
up to the engineering of high-level architectures that span devices and the cloud.
It demands expertise in the most cutting-edge approaches to artificial intelligence
and machine learning along with the most venerable skills of bare-metal embedded
software engineering. It makes use of the entire history of computer science and
electrical engineering, laid out end to end.

Nobody in the world holds deep expertise in every subfield of edge AI. Instead, the
people working at the heart of the field rely on assembling networks of experts who
they can look to for insight into other pieces of the puzzle. If you’re building an edge
AI product, you may have to do the same for yourself.

123

The best team for edge AI is one that has broad, cross-disciplinary knowledge, direct
experience working on the problem domain, and comfort working in an iterative
development process. The best executed products so far have come from teams with
direct experience of the issue they are trying to solve: they’ve taken their existing
knowledge and used it to inform their edge AI product.

It isn’t necessary for a single team to have experts in every subfield of edge AI. The
absolute bare minimum is probably two roles:

• A domain expert, who has deep insight into the problem to be solved•
• An embedded engineer with experience developing for devices similar to the•

target

There’s no reason why these two roles can’t be filled by the same person. However,
without experience working with machine learning or other AI algorithms, they’ll
have to rely very heavily on end-to-end platforms designed to guide non-ML experts
through the process of algorithm creation.

If you’re a solo developer without embedded development expe‐
rience, you can level up your skills by building some non-AI
projects on your target hardware. To make your life easier, you
might consider sticking to SoC-level hardware, since embedded
Linux development is much easier than bare metal. If you’re using
an end-to-end edge AI platform it should be relatively simple to
deploy your model.
Determination and some scrappy improvisational skills can go a
long way: we’ve seen plenty of scientific researchers build their own
AI-powered hardware with relatively simple embedded skills.

While many problems can be solved by a minimal team, the most complex problems
will require more heavy lifting. The remainder of this chapter lays out the roles and
responsibilities that can potentially be important, which will hopefully give you a
sense of what you need for your own team. It also talks through the challenges of
hiring for edge AI.

Domain Expertise
Domain expertise, as we’ll learn about in detail in “Datasets and Domain Expertise”
on page 205, is by far the most essential component of your team. If you have nothing
but domain expertise and a budget, you can still hire developers and get a product
built. But if nobody on your team has a deep understanding of the problem you’re
trying to solve, it’s very unlikely you’ll be able to solve it. In fact, there is a fair

124 | Chapter 5: Tools and Expertise

chance you may end up trying to solve the wrong problem or creating a solution that
nobody needs.

It would be difficult to build any kind of quality product without domain expertise,
but building an AI product without domain expertise is almost impossible. The
goal of edge AI is to distill expert knowledge into a piece of software and use it to
automate a process. As we learned earlier in the book, intelligence means knowing
the right thing to do at the right time. But how can we build a system that does that if
we do not know it ourselves?

If you aren’t a domain expert yourself, your first job is to find someone who is. Your
second job is to have them validate the solution that you are planning to build. Here
are some of the questions to ask them:

• Does the problem you wish to tackle really exist?•
• If it exists, is it a useful problem to solve?•
• Are there solutions to the problem that already exist?•
• Would your proposed solution actually help solve the problem?•
• Does your proposed solution sound feasible to build?•
• If you build your solution, would anybody in the field want to buy it?•

You should hopefully be able to ask someone these questions without having to pay
too much money: they’re the basic questions that any genuine domain expert would
be thinking about if you were to offer them a job. You should make sure you pay
attention to their answers, even if you disagree. If a genuine expert is telling you
something is a bad idea, there’s likely some truth to it.

Domain expertise should be at the heart of your organization and part of your core
team. Your experts will be involved with so many aspects of the project that it isn’t
feasible for them to be peripheral members. That said, the ideal situation is that you
have domain expertise at every level of your organization. For example, in addition
to your core expertise you may have engineers, board members, and advisors who
all have experience in the relevant area. Their combined insight will help your team
anticipate and mitigate risk.

If you are unable to find anyone with the required expertise, you should abort your
project before it gets started. There’s simply no way to work ethically if you don’t
have the appropriate knowledge. Your project may be violating some golden rule of
the field—and you wouldn’t have any way to know about it. It’s not acceptable to test
unqualified functionality on your customers, as Figure 5-1 makes clear. It’s so difficult
to establish a feedback loop with performance in the field that you likely won’t know
what’s going wrong.

Building a Team for AI at the Edge | 125

1 See “What Are the 4 Types of Diversity?” for more information on the four core areas.

Figure 5-1. Using customers to validate your solution is a horrible idea (Twitter, 2022)

If you are truly convinced that you have a good idea, you may have to spend some
time developing the required expertise yourself.

Diversity
In addition to domain expertise, the other essential property your team should aim
for is diversity. As we discussed in “Mitigating societal harms” on page 51, one of the
best defenses against societal issues is to build a team with diverse perspectives.

It can be helpful to think of workplace diversity in terms of four core areas:1

Internal
Internal diversity reflects the things that a person is born with and didn’t choose
for themselves. Some of these areas include age, nation of origin, race, ethnicity,
sexual orientation, gender identity, physical ability, and personality types.

External
External diversity includes the things we pick up along the way, whether due
to influence by external factors or due to conscious choices. Some examples
are socioeconomic status, life experiences, education, personal interests, family
status, location, and religious beliefs.

Organizational
Organizational diversity relates to a person’s role within an organization. This
might include their place of work, job function, level within a hierarchy, pay level,
seniority, or employment status.

126 | Chapter 5: Tools and Expertise

https://oreil.ly/SQ-P9
https://oreil.ly/jI6HJ

2 It’s part of a strategy known as “dogfooding,” covered in “Real-world testing” on page 321.

Worldview
Diversity in worldview relates to how a person sees the world. It can include
things like ethical frameworks, political beliefs, religious beliefs, personal philos‐
ophy, and general outlook on life.

As a result of differences in these four areas, every person has a different set of experi‐
ences that make their perspective unique. This unique viewpoint means that they will
see the same situation in different ways. As a team building technology products, a
diversity of perspectives is incredibly valuable because it allows the organization to
view the problem and the proposed solutions from a multitude of different angles.

This provides a significant advantage over organizations that lack diversity. You’ll
be more capable of identifying all the nuance in a given situation, which has huge
benefits when mapping out the space of possible solutions. Perhaps someone’s per‐
sonal experiences will translate into an amazing idea that nobody else would have
thought of.

Even more importantly, diverse perspectives will help you identify issues with your
own product. For example, you may find that different people naturally come up with
different axes on which to evaluate your product’s performance. A person with kids
is more likely to consider the need for a product to cope well with family life, and
someone with a physical disability may be more likely to think about accessibility.

This isn’t to say that the members of your team should stand in for domain experts
in these areas: just because a person has a disability does not mean they are automati‐
cally your official accessibility expert, a role they may neither want nor be qualified
for. However, the fact that your team has diverse perspectives hopefully means that
they are more likely to consider the need to bring on an accessibility expert.

It’s not enough to just have a diverse team: individuals have to be comfortable sharing
their input, and the rest of the organization has to actually listen to them. The work
of building that type of environment is beyond the scope of this book, but there’s
plenty of literature on the subject. A good place to start is this introduction to
psychological safety from Google, who have found that teams where individuals can
confidently speak up are far more effective.

Another key idea is that you should make use of perspectives from your entire
organization. Beyond the people working directly on the product, you should draw
feedback from everyone you can—from executives to entry-level workers. This will
help you avoid blind spots in your insight. At many large tech companies, employees
are encouraged to sign up to test new products that are still in development,2 allowing
development teams to access insight from across the entire company.

Building a Team for AI at the Edge | 127

https://oreil.ly/rZYFL
https://oreil.ly/rZYFL
https://oreil.ly/2LD_i

As with everything in iterative development, this process is all about building feed‐
back loops that will help make your product over time. You should create systems to
gather the perspectives of your diverse team from the very earliest stages when you’re
still sketching out ideas.

It’s not always feasible for a single team to include all of the necessary diversity of
perspectives. For example, you may need input on a product from young children,
who are unlikely to be paid employees of your organization! One way to ensure these
perspectives are included is to create a budget for having focus groups with these
types of people throughout the course of your project.

Another way of broadening perspectives is to find a diverse group of advisors who
can help inform your decisions. Assembling an advisory board that combines exper‐
tise in key areas with diverse representation is a powerful tool for helping you make
the right decisions. They can act as a review board who can help you understand
whether you are meeting your goals or veering off course.

Regardless of whether you have a large team, you should be relentless in seeking
feedback from the people affected by your product—the most diverse group of all.

The Costs of Diversity
It’s worth noting that diversity comes with some costs. Beyond the practical expense
of compensating people for their time, diverse teams may find it harder to reach
agreement on things like values and goals.

The leadership of a project needs to be prepared for this and may have to make some
decisions that do not have full agreement. Documenting the reasoning behind any
decisions, along with any dissenting views, is essential in ensuring a team can track its
decision making and improve it over time.

That said, if there’s fundamental disagreement on a particular issue, it can be a sign of
significant risk.

Stakeholders
The stakeholders of your project are all of the people and communities who are
potentially affected. This includes people within your organization, your customers,
the end users of your system, and anybody who may be impacted—both directly and
indirectly.

For a system to be effective, and for it to avoid causing harm, the needs and values
of stakeholders must be considered. For example, if your system will come into
contact with members of the public then it is important that they are considered as
stakeholders, and that the project is designed with them in mind.

128 | Chapter 5: Tools and Expertise

The best way to understand the needs and values of stakeholders is to ask them
directly. They should be represented throughout your development workflow, from
ideation to end of life.

Stakeholders can be identified using a well-established tool known as stakeholder
mapping. You should make sure your team includes someone who is familiar with the
process.

Roles and Responsibilities
Building a product takes a village full of people, and the next section of this chapter
outlines some of the roles that are required. Your project may require roles that are
not included here; these are just the most common ones that directly participate in
the edge AI workflow.

You don’t need to hire an individual person for each role. It’s
perfectly possible for the same person to play multiple roles in a
project, and early on it may be the case that all of your prototyping
is done by a single person.

For ease of digestion, we’ll divide up the roles by type.

Knowledge and understanding
The roles in this category are critical to understanding the problem and solving it in
the right way:

Domain expert
The starring role in the play, the domain expert brings a deep understanding of
the project area. While a product manager’s job is to understand how a project
fits into the surrounding context (such as the market), a domain expert is the
person who understands the science of the situation. For example, an industrial
automation project might require a domain expert in the relevant industrial
processes, and a healthcare project might need an expert in the related areas of
medicine and biology.

Ethics and fairness expert
The ethics and fairness role is required in order to avoid making the types of
mistakes that often result in harmful or ineffective products. They need a strong
understanding of the technologies that will be used to solve a problem, the types
of pitfalls that can emerge, and the processes that need to be followed. Domain
expertise is important, too, since ethical issues can be specific to a domain.

Building a Team for AI at the Edge | 129

https://oreil.ly/t7Gv0
https://oreil.ly/t7Gv0

Planning and execution
These high-level roles are important in guiding the project down the right path as it
travels from ideation to launch and long-term support:

Product manager
A product manager is responsible for making decisions about the product: what
it should be, what it should do, and who it should serve. Their job is to deeply
understand the problem and the market, and work with those in technical roles
to design and implement an effective solution. They lead through influence, pull‐
ing together different threads to weave a product that fits the right requirements.

Project manager
The project management role involves coordinating the execution of complex
tasks across groups of people. For example, a project manager may organize the
collection of a dataset that will be used to build and create a product.

Program manager
Program managers coordinate high-level strategies that are made up of multiple
projects. For instance, a company planning to incorporate edge AI into multiple
parts of its business to make cost savings may use a program manager to coordi‐
nate the process.

Algorithm development
These roles are involved in the exploration of datasets and the design of algorithms—
along with mechanisms for evaluation of the system that is being built. This work
can increasingly be done by nonexpert users who are using end-to-end platforms, but
it’s always good to have some solid experience to draw on to avoid making rookie
mistakes:

Data scientist
The data science role is responsible for gathering, maintaining, and understand‐
ing the data that underlies an edge AI project. They have skills in data cleaning,
analysis, and feature engineering. This role may often encompass machine learn‐
ing work, but it could just as easily be distinct.

DSP engineer
A DSP engineer develops and implements DSP algorithms. They typically have
strong skills in both algorithm development and low-level programming. DSP is
extremely important in most edge AI projects—with the exception of those that
combine deep learning with image data, since images are typically input without
much processing.

130 | Chapter 5: Tools and Expertise

ML practitioner
Machine learning practitioners spend their time trying to solve problems with
ML. An ML practitioner will try to frame a problem in terms of different types
of learning algorithms. They will then work with a dataset, attempting to develop
algorithms that solve the problem. A key part of their role is determining how to
evaluate algorithms and their performance, both in the lab and in the field.

In an edge AI project, DSP engineers and ML practitioners work very closely
together, since DSP is a sophisticated form of feature engineering—which is a key
part of the ML workflow.

Product engineering
This set of roles leads development of the product itself. They create the hardware
and application code, and they implement the algorithm in a form that works effi‐
ciently on-device:

Hardware engineer
A hardware engineer designs the hardware that powers a product. This design
includes both the sensors that capture raw data and the processors that attempt
to make sense of it, along with the design and layout of printed circuit boards.

It’s critical for hardware engineers to work closely with those in algorithm devel‐
opment roles so that the hardware and algorithms support each other. This is a
two-way street: algorithm design must be informed by hardware constraints, and
hardware design must be informed by algorithm design.

Embedded so!ware engineer
Embedded software engineers write the low-level code that brings a piece of
hardware to life. Their code has to interface with sensors, run algorithms, and
interpret their output in order to make decisions. They implement the embedded
application itself.

Embedded ML engineer
Some embedded software engineers focus specifically on machine learning. Their
job is to make sure that ML algorithms run as efficiently as possible on a particu‐
lar piece of hardware. They may have deep knowledge of the mathematics behind
machine learning, along with experience with low-level software optimization.
They aren’t necessarily an expert in data science, although they can likely train
simple ML models.

This is a very new role, but it’s growing in step with the edge AI space.

Building a Team for AI at the Edge | 131

Industrial designer
An industrial designer creates the physical design of the product. This is relevant
to edge AI in that the physical design dictates many of the realities of sensor
data collection: moving a sensor to another location on a product can completely
change its typical output and make a dataset instantly obsolete. This means there
needs to be significant communication between industrial design, electronics
engineering, and algorithm development.

So!ware engineer
Many projects involve software engineering outside of the embedded space. For
example, a lot of edge AI projects involve a server-side component. Writing this
backend code requires different skills to developing embedded applications, so a
different type of engineer is needed.

Technical services
These supporting roles help keep the technical side of the development process
running smoothly and manage the tools that keep the team productive and safe:

MLOps engineer
An MLOps engineer is responsible for building and maintaining the MLOps
solutions that are used by the rest of the team. It’s essentially a DevOps role, but
it requires strong understanding of the processes and demands of the edge AI
workflow.

Security practitioner
This role attends to the security needs of the team, its data, and the products that
are produced. It is both a consulting role—helping other roles understand how to
be secure in what they do—and a proactive role, putting measures in place that
help reduce security risk.

Quality assurance engineer
This role helps design and implement testing plans that put a product through its
paces, allowing a team to understand whether the product is meeting its design
goals. There’s more about quality assurance in “Real-world testing” on page 321.

Hiring for Edge AI
A significant challenge of edge AI development is that as a very new field, there are
not many people out there with experience working on it. At the time of writing, it is
almost impossible to hire an engineer who has existing experience with edge AI: there
are likely only a few hundred in the world, and most are still working on their first
exciting edge AI projects and haven’t had long enough to get itchy feet.

132 | Chapter 5: Tools and Expertise

https://oreil.ly/kEFI-

Fortunately, the fact that this is a new field means that even the most experienced
engineers only have a couple of years’ advantage. Recent advances in edge AI tooling,
particularly in the form of end-to-end platforms, have massively reduced the barriers
to entry. Hiring for edge AI has two main fronts where very specific knowledge is
required: algorithm development and embedded engineering.

In the case of algorithm development, you’ll likely be in the market for data scientists
and ML practitioners. Some practitioners have backgrounds in applied engineering,
solving practical problems in industry. Others may have a more academic back‐
ground, investigating the principles underlying machine learning and coming up
with new techniques.

Applied practitioners will have more experience with problem framing, which is very
important in edge AI. This makes them a desirable choice, especially as an initial or
solo hire. That said, academic researchers can still be a good fit for edge AI projects.
They are less likely to have experience working within a typical software development
environment and may take longer to ramp up. On the other hand, they are easier to
hire than applied practitioners: there are simply more of them.

ML research is very different from applied ML, and some ML
researchers may feel bored routinely applying existing techniques
rather than attempting to come up with new ones. Make sure that
it’s clear to candidates what the expectations are around a role to
avoid disappointment on both sides.

One difficulty is that not many people in data science and machine learning have
much experience with sensor data. While vision is a common modality, audio is
less so, and time series sensor data is likely to be a mystery to most practitioners:
while time series analysis is common in data science, it’s not typically the type of
high-frequency time series that are produced by electronic sensors.

Fortunately, DSP engineers have a similar workflow and toolchain to ML practition‐
ers, and they are already experts in feature engineering for sensor data. The skills and
experience of DSP engineers makes them well suited to learning embedded ML, so
one potential avenue is to recruit DSP engineers and have them learn the basics of
machine learning. A team composed of both DSP engineers and ML practitioners
will have a much easier time than either role alone.

In terms of embedded engineering, the challenges vary. While working with deep
learning interpreters (or code generated by a deep learning compiler) is often simply
a matter of library integration, embedded engineers may sometimes have to dig
into the internals to figure out when something is going wrong. In these cases,
some knowledge and understanding of deep learning is definitely helpful. Embedded
engineers may also end up being responsible for the onerous task of converting a

Building a Team for AI at the Edge | 133

model into the appropriate form to use on-device, which is definitely easier with
some ML insight.

Another common task for embedded engineers is to implement classical ML models
in software. There isn’t yet a great embedded-specific C++ library for this but porting
them is usually easy: there are reference implementations in higher-level languages
that are simple to understand.

Unfortunately, finding an embedded engineer with existing ML knowledge is going to
be a challenge for a while. That said, end-to-end platforms make things a lot easier,
and eventually the number of experienced embedded ML engineers will grow. For
now, it shouldn’t be a blocker: a competent embedded engineer should be able to
learn today’s tools without too much trouble.

Learning Edge AI Skills
Over the last few years, some great resources have emerged for learning about AI
at the edge. Like with most fields, there are two sides: theory and practice. Theory
content will be most interesting to those who wish to contribute to advancing the
field, while practical content is more helpful for those who wish to build products.

A word of caution: don’t get lost in the weeds. Many people who wish to build AI
products end up getting paralyzed by learning, exploring every rabbit hole they can
rather than actually getting started on their projects. The reality is that this is a
massive field, and you’re never going to be able to learn it all. Be oriented toward
action, learn enough to take your next step, and then reevaluate. Successful hardware
products require teams, so figure out the minimum you need to know and then bring
some experts on board.

Here are our top recommendations for both practical and theoretical content.

Practice
The final three chapters of this book, starting with Chapter 11, will walk through the
edge AI workflow end to end with three real-world use cases: wildlife monitoring,
food quality assurance, and consumer products.

Once you’re done with that, here’s some further content:

Introduction to Embedded Machine Learning (Coursera course)
A highly rated online course intended as a practical introduction to the subject.

Computer Vision with Embedded Machine Learning (Coursera course)
A follow-up to the first course, focused specifically on vision.

134 | Chapter 5: Tools and Expertise

https://oreil.ly/ouQyM
https://oreil.ly/LgjmK

3 Remember, the best way to learn is to build! Don’t fall into the common trap of thinking you need to
memorize all of the theory first. This field develops so rapidly that you can never hope to learn it all.

Applied Machine Learning (TinyML) for Scale (HarvardX course)
This brilliant collection of courses focuses on the applied skills and big-picture
expertise required for working with embedded ML.

TinyML Cookbook, a book by Gian M. Iodice (Packt, 2022)
A practical book based around useful “recipes” that demonstrate various con‐
cepts within embedded ML.

TinyML, a book by Pete Warden and Daniel Situnayake (O’Reilly, 2020)
A working introduction to embedded ML on microcontrollers, with examples
focused on TensorFlow Lite for Microcontrollers.

Designing Machine Learning Systems, a book by Chip Huyen (O’Reilly, 2022)
A fantastic book about the machine learning development workflow, geared
toward server-side applications but still very relevant.

Making Embedded Systems, a book by Elecia White (O’Reilly, 2011)
The best available practical introduction to developing embedded systems.

Theory
This content is for people who want to dig deeper into the theory of embedded
machine learning. Remember, it’s not a prerequisite for successful product develop‐
ment—so don’t feel intimidated or get lost down the rabbit hole of studying.3

Tiny Machine Learning (TinyML) (HarvardX course)
This set of courses overlaps with Applied Tiny Machine Learning (TinyML) for
Scale, referenced earlier, but starts with the absolute fundamentals—which may
not be necessary if you want to get building as quickly as possible.

#e Scientist and Engineer’s Guide to Digital Signal Processing, a book by Steven W.
Smith (California Technical, 1997)

A truly comprehensive guide to digital signal processing, available for free and
as a hardcover book. A good resource for any non-DSP engineer who will be
working seriously with DSP algorithms.

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, a book by
Aurélien Géron (O’Reilly, 2022)

A wonderful introduction to practical machine learning concepts and skills.
A good resource for any non-ML engineer who will be working with
ML algorithms.

Building a Team for AI at the Edge | 135

https://oreil.ly/jX-m1
https://oreil.ly/Q_Eto
https://tinymlbook.com
https://oreil.ly/aY4Iv
https://oreil.ly/BQG6z
https://oreil.ly/cZoLK
https://oreil.ly/Oir2V
https://oreil.ly/tfO2J

4 Founded by Pete Warden, then at Google, who kindly wrote the foreword for this book.
5 Which impressed this book’s authors enough that we left jobs at Google and Arm to come and work on it.

Deep Learning with Python, a book by François Chollet (Manning, 2021)
Another fantastic introduction to ML, specifically focused on deep learning
algorithms.

TinyML Foundation (YouTube channel)
The TinyML Foundation hosts regular presentations on embedded ML. Typ‐
ically highly technical, this content reflects the cutting edge of research
and engineering.

TinyML papers and projects (GitHub repository)
This repo is a goldmine of papers and resources related to the field.

Tools of the Trade
The story of edge AI is a story of tooling. In terms of raw technology, most of
the basic ingredients required for putting artificial intelligence on edge devices have
existed for a decade or more. However, these technologies—from capable embedded
processors to deep learning models—tend to have a steep learning curve when they
first become available.

Over time, however, our global technology ecosystem evolves tooling designed to
manage the complexity and improve the usability of even the most challenging
technologies. A rich combination of open source and commercial libraries, frame‐
works, and products have brought edge AI into the toolbox of the average embedded
engineer.

A lot of this work has happened in the past two or three years, with libraries such
as TensorFlow Lite for Microcontrollers4 and end-to-end development platforms like
Edge Impulse5 bringing the technology over the threshold to enable mass adoption.

The following sections will walk through the tools that we think are most essential to
AI at the edge. Successful teams will be at least passingly familiar with all of them.

End-to-End Platforms
End-to-end development platforms for edge AI incorporate many of the tools
described in the following section, providing automated integration between them—
along with a conscious, holistic design intended specifically for edge AI projects. They
can massively reduce the complexity burden, making development much faster and
less risky—and helping you avoid drowning in an ocean of unfamiliar tooling.

136 | Chapter 5: Tools and Expertise

https://oreil.ly/G7qW4
https://oreil.ly/AdXwm
https://oreil.ly/P1YbW
https://oreil.ly/oowo5
https://edgeimpulse.com

6 Known as “bare metal.”

End-to-end platforms are explained in their own section, “End-to-End Platforms for
Edge AI” on page 162. While it’s helpful to have a basic understanding of low-level
tools, it’s advisable to start with an end-to-end platform and only attempt to “roll your
own” if the platform doesn’t fully meet your needs. In that case, the best end-to-end
platforms will integrate with other industry standard tools so that you can extend
their functionality without losing the benefits.

Software Engineering
A large portion of edge AI involves software development, so modern software
engineering tools are incredibly important. Here are some of the key contributors.

Operating systems
It’s important to consider operating systems during both development and deploy‐
ment. In development, your OS of choice will determine how easy it is to work
with the extremely diverse set of software tools that make up the edge AI ecosystem.
There’s a bit of minor conflict between two different engineering traditions.

In embedded engineering it’s historically common to use Windows as an operating
system, and some embedded tools are written with this assumption. In contrast,
the tools of data science and machine learning are typically best suited to a Unix-
compatible environment such as Linux or macOS.

That said, this isn’t a huge problem in practice. It’s not strictly necessary for every
member of a team to be able to run all of the tooling: for example, a machine
learning engineer might train and optimize models with Linux and then hand them
over to an embedded engineer who uses Windows. There are also plenty of tools
for mixing environments, such as Windows Subsystem for Linux. In addition, it’s
common for more recent embedded toolchains to work fine in Unix environments—
although embedded engineers may still prefer Windows as a familiar environment.
The entire team at Edge Impulse, including both embedded and ML engineers, uses a
combination of macOS and Linux virtual machines.

In deployment, operating systems are sometimes used on edge devices themselves.
These are typically either embedded Linux (stripped-down distributions of Linux
compiled to run on SoCs) or real-time operating systems (RTOS), which are special
embedded-specific operating systems designed to run with minimal overhead. Both
of these options, plus the option of no OS at all6 (which is the most common case for
microcontrollers), are fully compatible with edge AI.

Tools of the Trade | 137

https://oreil.ly/VYaE6

7 A popular language for statistical computing that is not typically used for purposes outside data analysis.

Programming and scripting languages
The two most important programming languages for edge AI are Python and C++.
Python is overwhelmingly the current language of choice for machine learning,
thanks to a vast array of open source mathematical and scientific computing libra‐
ries and nearly 100% adoption by the machine learning research community. Since
Python is also a first-class language for general software engineering, it beats domain-
specific languages such as R.7 The two most important deep learning frameworks,
TensorFlow and PyTorch, are both written in Python, as are the incredible tools we’ll
encounter in “Mathematical and scientific computing libraries” on page 143. Python
has its quirks, but it’s the right language to use for developing edge AI algorithms—
from machine learning to DSP.

C++ (pronounced C-plus-plus) is a ubiquitous language in modern embedded soft‐
ware engineering. While some embedded platforms only support C (a simpler lan‐
guage than C++ that shares some characteristics), the high-end embedded devices
that are typically used for edge AI are generally programmed with C++. The ecosys‐
tem around C++ features numerous tools and libraries that can make development
easier, which is lucky—since it’s the only game in town for most microcontroller-
based systems.

C++ is a low-level language that provides a huge amount of control over the underly‐
ing hardware. It takes a skilled engineer to write good C++ code, but it can be much
faster than the equivalent written in a higher-level language such as Python.

It’s interesting to note that most of the mathematical heavy lifting
done by Python libraries is actually implemented in C++ under the
hood: the Python code is just used as a convenient wrapper. This
gives developers the best of both worlds.

You’re also likely to use scripting languages, such as Bash, during the development
process. They are used to chain together and automate the complex tools and scripts
that help build applications and deploy them to devices.

In terms of targets, you can expect to almost always use C++ when working with
microcontrollers. SoCs, which run full operating systems, are often a lot more flexi‐
ble—you may be able to run high-level languages such as Python. The trade-off is
that they are far more expensive and consume a lot more energy than smaller devices.

Since most targets require C++, you’ll need to port any algorithms developed in
higher-level languages (like Python) in order to deploy your work. There are some
tools explained later that make this easier, but it’s not always a simple process.

138 | Chapter 5: Tools and Expertise

8 The most common Python dependency management tools are pip and Conda; Poetry is a relative newcomer
but is highly recommended.

Dependency management
Modern software typically has a lot of dependencies, and AI development takes this
to the next level. Data science and machine learning tools often require absurd num‐
bers of additional third-party libraries; installing a major deep learning framework
such as TensorFlow brings everything from web servers to databases along for the
ride.

Things can get complex on the embedded side, too, since signal processing and
machine learning algorithms commonly require sophisticated, highly optimized
mathematical computing libraries. In addition, the compilation and deployment of
embedded C++ code often requires a rat’s nest of dependencies to be present on a
machine.

All of these dependencies can be an absolute nightmare and managing them is truly
one of the most challenging parts of edge AI development. Various techniques exist
to make it easier, from containerization (see the next section, “Containerization” on
page 139) to language-specific environment management.

For Python, one of the most helpful tools is called Poetry. It aims to simplify the
process of specifying, installing, and isolating dependencies in multiple environments
on a single machine.8 Other essential tools include OS-specific package management
systems like aptitude (Debian GNU/Linux) and Homebrew (macOS).

One of the worst parts of dependency management comes when attempting to
integrate different parts of a system together. For example, a model trained with one
version of a deep learning framework may not be compatible with an inferencing
framework released slightly later. This makes it extremely important to test systems
end to end very early in the development process, to avoid nasty surprises later on.

Containerization
Containerization is the use of OS-level techniques to run software inside of sand‐
boxed environments called containers. From inside, a container appears entirely
distinct from the machine that is running it. It can have a different operating system
and dependencies, and limited access to system resources.

Edge AI involves many different toolchains, used for everything from machine learn‐
ing to embedded development. These toolchains often have mutually incompatible
dependencies. For example, two toolchains might require entirely different versions
of a language interpreter. Containerization is a powerful tool for enabling these
incompatible toolchains to happily live side by side on a single machine.

Tools of the Trade | 139

https://oreil.ly/fV_w0
https://conda.io
https://python-poetry.org
https://oreil.ly/aCq1n
https://brew.sh

Containers are typically state-free and highly portable. This means that you can
treat an entire painstakingly configured machine—described in a special syntax—as
a command-line program that does a specific task. You can chain these together in
order to perform useful work, and you can easily run them on different machines for
a distributed computational environment.

It’s also possible to run containers on embedded devices, typically within embedded
Linux on an SoC. This can be an interesting way to package your software and its
dependencies for distribution, although there is some overhead involved.

The most popular tools for containerization are Docker and Kubernetes. Docker is
typically used locally on a development workstation, while Kubernetes is used to run
clusters of containers within distributed computing infrastructure.

Distributed computing
Distributed computing is the idea of running different processes on different
machines, potentially located anywhere in the world and connected via the internet.
It’s a more flexible way to approach computation than the use of single, high-powered
mainframes and supercomputers, and it’s the architectural style underlying the
majority of modern computing.

Distributed compute is important to edge AI for many reasons. First, edge AI is an
example of distributed computing! Computation is performed at the edge, where the
data is created, and the results are either used locally or sent across the network.

Second, managing datasets, developing algorithms, and training machine learning
models can be highly compute and storage intensive. This makes distributed comput‐
ing a good fit for these parts of the process. For example, it’s common to rent a highly
capable remote server in order to train deep learning models—as opposed to having
to buy and maintain a powerful machine for your office.

The task of organizing and controlling distributed computing infrastructure is called
orchestration. There are many open source orchestration tools available, designed
for different tasks. Kubeflow is an orchestration framework designed for running
machine learning workloads across multiple machines.

Cloud providers
Businesses like Amazon Web Services, Google Cloud, and Microsoft Azure provide
on-demand distributed computing resources that are available to anyone willing to
pay for them. This type of distributed compute is known as “cloud compute,” since
diagrams of computer networks typically use a cloud symbol to signify resources that
are located outside of the local network.

Cloud providers host most of the world’s websites. They take care of the physical
hardware and the network configuration, allowing developers to focus on building

140 | Chapter 5: Tools and Expertise

https://www.docker.com
https://kubernetes.io
https://www.kubeflow.org
https://aws.amazon.com
https://cloud.google.com
https://oreil.ly/zXZeB

applications rather than managing equipment. They make heavy use of containeriza‐
tion to allow many different workloads to live side by side on the same infrastructure.

It’s common for edge AI projects to use cloud compute for storing datasets, training
machine learning models, and providing a backend from which edge devices can
send and receive data. In some cases, such as “Cascade to the cloud” on page 288, AI
algorithms running on cloud servers work in unison with those on edge devices in
order to provide a service.

Working with Data
Data is a key ingredient of edge AI applications, and many tools exist for collecting,
storing, and processing data.

Data capture
Obtaining data from the field can be difficult since there’s often limited connectivity
available at remote locations. Two useful tools are data loggers and mobile broadband
modems.

Data loggers are small devices designed to capture and log data collected by sensors
in the field. They typically have a large amount of persistent storage for collecting
sensor readings and can either be battery powered or connected to a permanent
power source. The benefit of using a data logger is that you can begin collecting data
immediately, before designing and building any of your own hardware. The downside
is that data needs to be collected manually, by physically connecting to the logger.

Mobile broadband modems provide a wireless internet connection, typically via cel‐
lular networks—although satellite connections are also available. They can potentially
transmit data from almost anywhere in the world, although connectivity depends
on local availability and conditions. They offer the convenience of immediate data
availability. However, data rates can be quite expensive, and wireless communication
consumes a lot of energy, so they are not feasible for use in all situations.

IoT device management
Many platforms exist for communicating with IoT devices, managing their operation,
and collecting data from them. Using them typically involves integrating either libra‐
ries or APIs into your embedded software. The software then connects with a cloud
server that you can use to control the device.

These platforms can be convenient for collecting sensor data, especially in brownfield
deployments where device management software may already be in use.

Tools of the Trade | 141

https://oreil.ly/0Tl46
https://oreil.ly/xl0eZ
https://oreil.ly/xl0eZ

Data storage and management
As you collect your dataset, you’ll need somewhere to store it. This can be as simple
as comma-separated files on a hard disk—or as complex as a time series database
designed specifically for storing and querying time series data. We will cover some of
these options in “Storing and Retrieving Data” on page 220.

Data storage solutions are designed for various purposes. Some are intended to be
extremely fast at real-time querying of data, while others are designed to be as robust
as possible against data loss. For edge AI applications, you’re typically dealing with
data in a “batch” mode, so performance isn’t usually the most important factor.
Instead, you should aim for a simple solution that fits the type of data you are
collecting.

It’s pretty common for AI datasets to be stored in the filesystem, without any type
of database at all. Filesystems are designed for this type of data, and filesystem tools
such as those available for the Unix command line can be helpful in manipulating
it efficiently. Python’s scientific computing ecosystem includes a lot of tools that are
great at reading data from disk and helping you explore and visualize it.

While a fancy database isn’t necessary, storing data in the right format is still impor‐
tant. As we will learn in “Formatting” on page 246, sensor readings themselves
should be stored in an efficient, compact binary representation such as CBOR, NPY,
or perhaps TFRecord—which is specifically designed for high performance during
machine learning training. Metadata about readings should be stored in separate files
(known as manifest "les) or in a simple database. Separating data from metadata in
this way allows you to efficiently explore and manipulate datasets without reading
massive files into memory.

Data pipelines
A data pipeline is a process that takes raw data and transforms it for use in a task,
such as training a machine learning model. It’s the way that data engineers automate
things like data cleaning and wrangling. A typical data pipeline might take raw sensor
data, filter it, combine it with other data, and write it into the correct format for
training a machine learning model.

Many tools exist for defining data pipelines, some more complex than others. Edge
AI data pipelines tend to involve very large amounts of relatively simple data, so
avoid tools that are designed for working with structured data (such as data stored in
relational databases). Instead of querying capabilities, look for high throughput and
enough flexibility to run arbitrary signal processing algorithms.

Many cloud providers have features for running data pipelines in their distributed
infrastructure. Some end-to-end platforms for edge AI make data pipelines a core
feature and are designed specifically for the characteristics of sensor data.

142 | Chapter 5: Tools and Expertise

https://cbor.io
https://oreil.ly/FdGWo
https://oreil.ly/5HZPO

Algorithm Development
Algorithm development is where most of the tooling complexity lives; there’s a real
galaxy of software available to help with the process. Some software is better suited to
edge AI than others.

Mathematical and scienti"c computing libraries
The Python community has created some legitimate marvels of software engineering
in the form of various open source libraries for performing mathematics and analysis
of numbers. Some of the most important ones are:

NumPy
NumPy describes itself as “the fundamental package for scientific computing
with Python,” and it’s absolutely true. It provides the high-performance backbone
for most Python-based numerical computing, and it has a wonderful API that
lets you do complex things to large arrays of numbers with minimal effort. Its file
format, NPY, is a convenient way to store sensor data.

pandas
What NumPy is to arrays, pandas is to tables of data. It provides an almost
magically intuitive syntax for querying and transforming any information that
can be organized into rows and columns. Pandas works with NumPy, so you can
use it to help explore your sensor data; it’s super-fast.

SciPy
SciPy provides a collection of fast implementations of algorithms that are essen‐
tial to scientific computing. It’s used heavily in developing DSP algorithms, and
it’s the magic that powers many other tools.

scikit-learn
The library scikit-learn, built using NumPy and SciPy, provides a huge library
of implementations of machine learning algorithms, along with the tools needed
to feed them with processed data and evaluate their performance. Its API is
designed so that you can plug its components together interchangeably, mean‐
ing you can easily compare and combine different algorithms. It’s the gold
standard for classical machine learning in Python, and its data processing and
evaluation tools are often used even when training deep learning models with
other frameworks.

Tools of the Trade | 143

https://numpy.org
https://pandas.pydata.org
https://scipy.org
https://scikit-learn.org/stable

Data visualization
When working with data, visualization is an essential tool—especially when the data
concerned is digital signals. Graphs and charts allow us to represent and interpret
numeric information that would otherwise be incomprehensible. The Python ecosys‐
tem has some fantastic libraries for visualizing data. They can be quite complex to get
to grips with—especially if you want to customize visualizations beyond the provided
defaults—but once you get the hang of them they can quickly turn rows of numbers
into clear insight.

The two most common libraries are Matplotlib and seaborn. Matplotlib provides
a million different ways to create data visualizations; it’s commonly used to create
the figures in scientific publications. Its syntax can be a little challenging, but it’s so
popular that a quick web search will usually help you figure out what you’re trying to
do.

Seaborn is built on top of Matplotlib and is designed to tame some of the complexity,
making it easier to build attractive visualizations like the one in Figure 5-2 without
getting tangled in difficult APIs. It’s made specifically to pair well with pandas.

Figure 5-2. #is plot shows the ranges and means for various columns in a dataset of
plant measurements; it’s one of the visualizations in seaborn’s example gallery

Seaborn and Matplotlib output image files—but some visualization libraries, such as
Plotly, produce interactive visualizations that can be explored dynamically.

144 | Chapter 5: Tools and Expertise

https://matplotlib.org
https://seaborn.pydata.org
https://oreil.ly/uPOl0
https://plotly.com/python

Interactive computing environments
Edge AI development involves a lot of exploration that lives outside of the context of
routine software engineering. Exploratory data analysis, digital signal processing, and
machine learning all have a workflow that involves trying different ideas and quickly
visualizing the results.

Various interactive environments exist for this purpose. Rather than just running a
script and writing the results to a file or having to build an entire web application just
to express information visually, interactive computing environments allow code and
visualizations to exist side by side in the same editor.

The most important interactive environment for Python code is called Jupyter Note‐
book. Inside a notebook you can write and run Python code, and the output of
the code is displayed alongside. This includes any visualizations you generate using
libraries such as Matplotlib—as seen in Figure 5-3.

Figure 5-3. A screenshot from a Jupyter Notebook, showing a mixture of rich text,
code, and the output of the code; the featured notebook is from the TensorFlow Lite for
Microcontrollers Hello World example

Tools of the Trade | 145

https://jupyter.org
https://jupyter.org
https://oreil.ly/a976F

This allows you to build interactive living documents that contain both the imple‐
mentation of algorithms and the results of running them. They’re valuable as both an
interactive tool for experimentation and as documentary evidence of the work that
you’ve done. A common workflow is to experiment with algorithms in a notebook
until you find the best candidate, then port the code into regular Python scripts once
you know it works well.

Jupyter can be run locally, but there are also Jupyter-based hosted environments.
One of these is Google Colab, and another is Amazon SageMaker. Both can be used
without cost but will provide additional compute for a fee.

Another common environment for interactive computing is MATLAB, which com‐
bines a similar interactive environment with its own programming language. It’s
common in academia and engineering, but as a closed-source commercial product
that costs money to license, it’s less popular with software engineers. It’s quite likely
that those with a background adjacent to electrical engineering are familiar with
MATLAB, including DSP engineers.

There’s even an interactive environment designed specifically for edge AI. The
OpenMV IDE is an open source product created by the OpenMV team to support
development of machine vision applications. It makes it easy to test and implement
algorithms that interpret visual information, which can subsequently be deployed to
both OpenMV’s hardware, and to other targets. The OpenMV IDE is unique in that
it can be connected to a camera-equipped hardware device and display the results of
algorithms running in real time.

Digital signal processing
DSP algorithm development is typically performed in Python or MATLAB. Either
environment can be used, with individual DSP engineers typically preferring one
over the other.

In Python, SciPy’s scipy.signal module provides implementations of a lot of impor‐
tant DSP algorithms. In MATLAB, the signal processing and image processing tool‐
boxes are very helpful.

MATLAB has some nice GUI-based tools that reduce the amount of programming
required for algorithm development, but Python has the advantage of being directly
compatible with the toolchains used for training machine learning models—as well as
being free.

An increasingly popular third choice is GNU Octave, designed to be a free, open
source alternative MATLAB.

146 | Chapter 5: Tools and Expertise

https://oreil.ly/eA4Mb
https://oreil.ly/GxOs-
https://oreil.ly/NJ7Pr
https://oreil.ly/f0-KB
https://oreil.ly/UwJsO
https://oreil.ly/X8umU
https://oreil.ly/MYpwC
https://www.octave.org

9 Back when they were known as Facebook.
10 The history and comparison between the two frameworks is quite interesting, and this fantastic blog post

from AssemblyAI does a great job of summarizing it.

Deep learning frameworks
The ecosystem of deep learning tools is dominated by two wildly popular open
source frameworks, written for Python: TensorFlow, created by Google, and PyTorch,
created by Meta.9 Each framework originated as an in-house system for training deep
learning models, and they both reflect the priorities of their respective sponsors.

Deep learning frameworks are different from typical software libraries (like NumPy
or scikit-learn) in that they attempt to provide entire suites of tools under a single
banner. TensorFlow and PyTorch both include systems for defining and training
machine learning models, handling data, coordinating distributed systems, deploying
to different types of compute, and much more.

Example 5-1. A simple deep learning model architecture being de"ned and trained using
Keras, the high level API of TensorFlow

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

Defining the model architecture
model = Sequential()
model.add(Dense(units=64, activation='relu'))
model.add(Dense(units=10, activation='softmax'))

Setting up the training process
model.compile(loss='categorical_crossentropy',
 optimizer='sgd',
 metrics=['accuracy'])

Training the model
model.fit(x_train, y_train, epochs=5, batch_size=32)

Evaluating the model
loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)

The history of both tools has led to TensorFlow being the primary framework for
industry, while PyTorch is the preferred tool of deep learning researchers.10 A big part
of this is due to the TensorFlow ecosystem having more options available for model
deployment, and this is especially relevant for edge AI.

At the time of writing, the majority of tools for optimizing models for efficiency and
deploying them to edge devices have been written to integrate with the TensorFlow
ecosystem. TensorFlow and PyTorch have different formats for storing models, and

Tools of the Trade | 147

https://oreil.ly/6c6ta
https://oreil.ly/6c6ta
https://tensorflow.org
https://pytorch.org

11 In fact, it can be an absolute nightmare even for the most experienced developers.
12 Other formats are in use, such as ONNX, but the TensorFlow Lite format is by far the most popular.

while there are ways to convert between them, it isn’t a straightforward process.11

This means that the majority of ML engineers working in edge AI currently use
TensorFlow.

Since PyTorch is the framework of choice for researchers, many of the newest model
architectures are available first in a PyTorch format. This can be frustrating for indus‐
try developers who are using TensorFlow for its deployment capabilities. Fortunately,
most of the researchers focusing on producing smaller, more efficient models that are
suited for edge deployment are doing so within the TensorFlow ecosystem. The area
where model incompatibility is most frustrating is in visual object detection since the
training code for object detection models tends to be complex and difficult to port
from one framework to another.

At the time of writing, TensorFlow is the best choice of framework for edge AI
development. Developers using PyTorch will struggle with a complex and unreliable
conversion process when they attempt to deploy their models. It will be interesting to
see how this evolves over time as the PyTorch ecosystem matures.

Model compression and optimization
Edge devices typically require small, efficient models—especially in a deep learning
context, where parameter count and computational requirements can scale up fast.
In “Compression and optimization” on page 117, we learned about the various tech‐
niques available for improving the performance of models. Some of them are applied
during training, while others happen afterwards.

Compression and optimization tools are generally available either as part of deep
learning frameworks or by hardware vendors whose hardware supports particular
optimizations. The TensorFlow Lite converter has become the de facto standard for
operator fusion and basic quantization, with the TensorFlow Lite model file format
becoming close to a standard in the industry.12 Still in the TensorFlow ecosystem, the
TensorFlow Model Optimization Toolkit provides a collection of open source tools
that cover other types of optimization and compression.

It’s worth remembering that most optimization approaches also require special tool‐
ing at inference time, covered later in the sidebar “Inference and Model Optimiza‐
tion” on page 156. At the time of writing the best supported optimization approach is
quantization, with 8-bit quantized operator implementations widely available. Other
techniques are less well supported, with sparsity being the biggest red herring: it
sounds impressive, but there’s currently very little hardware that supports it.

148 | Chapter 5: Tools and Expertise

https://onnx.ai
https://oreil.ly/P5VHY
https://oreil.ly/ASl_h

13 TensorBoard works with both TensorFlow and PyTorch.

Experiment tracking
Algorithm development is an iterative, exploratory process, and over the course of a
project you’re likely to make hundreds or thousands of different attempts at getting
something that works acceptably well. It’s important to keep things scientific, testing
ideas systematically rather than just making random changes and hoping for the best.
To achieve this, you’ll need some kind of system for tracking experiments.

A typical experiment might involve taking a specific set of data samples, applying a
particular DSP algorithm, using the features to train a machine learning model with a
unique set of hyperparameters, and then testing the model on a standard test dataset.
This situation has a lot of variables: the choice of samples, the DSP algorithm, the
model, and its parameters.

Experiment tracking tools are designed to keep a log of which experiments are run,
how their variables are set up, and what the results are. They try to organize what
would otherwise be an unreliable, informal process of taking notes in a notebook and
trying not to forget any details. Experiment trackers can also store the artifacts that
result from experiments: training scripts, datasets, and trained models. This is helpful
in understanding and reproducing your work at a later stage.

Experiment trackers are available as both open source packages and hosted commer‐
cial products. One of the simplest options is TensorBoard, an official part of the
TensorFlow ecosystem.13 TensorBoard provides a simple web interface for visualizing
and comparing the logs collected during training runs, along with some very power‐
ful tools for optimizing and debugging training code. It’s useful for keeping track of
basic experiments, although it isn’t designed as a persistent datastore that will last the
lifetime of a project, and it doesn’t work well if you are running very large numbers of
trials.

A more sophisticated open source option is MLflow. It’s a complex web application,
backed by a database that can track experiments, store trained models, and package
data science code so that experiments can be reproduced easily. It’s better suited to
long-term use than TensorBoard, and it can scale to track many thousands of experi‐
ments. It doesn’t have the same optimization and debugging features as TensorBoard,
which remains the tool of choice for improving the computational performance of
training.

Many commercial products exist to help with experiment tracking. A notable option
is Weights & Biases, which has a simple API and a well-designed web interface (along
with many features that fit into the MLOps category, which we’ll explore in “Machine
learning operations (MLOps)” on page 151). A nice benefit of commercial tools is
that you don’t have to host them on your own infrastructure; you just pay a monthly

Tools of the Trade | 149

https://oreil.ly/nOaGP
https://mlflow.org
https://wandb.ai/site

14 Or hyperparameter tuning.

fee and someone else performs the setup and maintenance and makes sure they are
secure.

Automated machine learning (AutoML)
Once you begin tracking experiments using software, it’s a simple step to start run‐
ning them from software, too. AutoML tools are designed to automate the process
of iteratively exploring a design space. Given a dataset and some constraints, they’ll
design experiments to test different combinations of variables in order to try and find
the best model or algorithm.

This process is called hyperparameter optimization,14 and it’s a highly effective way to
find the best model for a particular dataset. There are many different algorithms that
guide hyperparameter optimization, from a simple grid search (where every possible
combination of variable is tried in turn) to named algorithms such as Hyperband that
aim to intelligently control the process for maximum efficiency.

AutoML isn’t a magic wand that will solve problems for you. It still takes domain
expertise to frame a problem and set up the design space in the correct way. What
AutoML can do is take the guesswork and tedium out of the ML workflow: it’s a way
to automate the trial and error while you focus on more productive things.

Some AutoML systems just take a design space as input and output a list of experi‐
ments to run, while others take it a step further toward the MLOps world (see the
next section, “Machine learning operations (MLOps)” on page 151) by orchestrating
the process of running the experiments using distributed computing techniques. A
particularly complex flavor of AutoML is neural architecture search (NAS), which
incorporates machine learning into the process of exploring the design space.

In terms of specifics, we recommend Ray Tune as a popular open source framework
for hyperparameter tuning that is able to orchestrate the task of running hyperpara‐
meter optimization within your distributed infrastructure. Sweeps by Weights &
Biases is a commercial, hosted product that helps orchestrate experiments on your
own hardware.

AutoML is especially powerful for edge AI. This is because models designed for edge
devices tend to be small and quick to train, which makes it easy to try a lot of
different options. It’s also especially important, since in edge AI we are optimizing for
more than just model accuracy: we also need to find the smallest, fastest, and lowest
power-consuming models that we can.

Typical AutoML tools don’t account for these things, but some end-to-end edge AI
platforms do.15

150 | Chapter 5: Tools and Expertise

https://oreil.ly/OOeNa
https://oreil.ly/8eGs9
https://oreil.ly/-tRCq
https://oreil.ly/-tRCq

15 Introduced in “End-to-End Platforms for Edge AI” on page 162.

Machine learning operations (MLOps)
The machine learning workflow has a lot of moving parts, and MLOps is the art and
science of keeping track of them all. It encompasses many of the types of tools that
we’ve covered in this chapter, from data storage systems to experiment tracking and
AutoML capabilities.

As an engineer on an ML project, you’re doing MLOps whether you’re conscious of
it or not. Even in the simplest projects, keeping track of your dataset, training scripts,
and your current best model can be a challenge. In more complex projects, where
every part of the workflow is constantly evolving as the result of feedback loops,
keeping a handle on what is going on can be nearly impossible without effective tools.

ML Pipelines
One of the key pieces of functionality that makes up an MLOps solution is the
ability to define and run ML pipelines. An ML pipeline is a scripted process that
takes data, applies transformations (including signal processing or any other feature
engineering), uses it to train a machine learning model, and evaluates the results. It’s
an extension of a data pipeline that includes the ML parts, too.

While initial experimentation often takes place in a notebook or in local scripts, it’s
common to start defining a formal pipeline once you want to begin automating the
process of training a model. For example, pipelines make it easier to run repeated
experiments to try different hyperparameters, and they are convenient if you are
continually adding fresh data and want to automatically train and compare new
models.

The simplest ML pipelines are implemented using scripting languages, either Python
or Bash, and run on a single machine. More complex pipelines may be designed
to run in distributed infrastructure, potentially with steps running in parallel to
improve performance. It’s common for sophisticated ML pipelines to make use of
containerization (see “Containerization” on page 139): each step of the pipeline may
be defined in a separate container that contains all of its required dependencies, and
the containers are invoked one after the other.

An MLOps system can be built from individual components: you may choose one
tool for dataset management, another tool for experiment tracking, and a different
tool to store your best models. It is equally common to use comprehensive frame‐
works that take care of every stage in the process. It’s also possible to use a mixture of
comprehensive frameworks and whichever individual tools fit your specific needs.

Tools of the Trade | 151

16 Listed in State of MLOps at ml-ops.org.
17 Including both model quality and computational performance.

MLOps is a big area that encompasses many categories of tools, including some
that we’ve seen earlier in this chapter. The website ml-ops.org, a great resource for
understanding MLOps, says that MLOps includes the following tasks:16

• Data engineering•
• Version control of data, ML models, and code•
• Continuous integration and continuous delivery pipelines•
• Automating deployments and experiments•
• Model performance assessment•
• Model monitoring in production•

Since edge AI is a new field, most MLOps systems are designed with the assumption
that models will be “served” by web services, not deployed to edge devices. The
unique nature of edge AI development involves some additional tasks, including:

• Capture of data from devices and sensors•
• Digital signal processing and rule-based algorithms•
• Estimation of on-device performance17•
• Model compression and optimization•
• Conversion and compilation for edge device support•
• Tracking which model versions are currently in the field•

A great way to think about MLOps is as a “stack”: a set of software tools that work
together to enable development, deployment, and maintenance of an edge AI system.
The company Valohai created the idea of an MLOps stack template: a diagram that
shows how all of the components of the MLOps stack fit together. Their original stack
template is based on a server-side context, but Figure 5-4 shows the idea adapted to
suit edge ML.

152 | Chapter 5: Tools and Expertise

https://oreil.ly/aGKfQ
https://ml-ops.org
https://oreil.ly/MKaon

Figure 5-4. A stack template for ML at the edge; you’ll need a solution for each of the
boxes, and probably some others depending on your particular use case

Over the course of development, you might choose to incrementally assemble your
stack from various software components. On the other hand, you may benefit from
working with a comprehensive MLOps platform that is designed specifically for edge
AI, as we’ll encounter in “End-to-End Platforms for Edge AI” on page 162.

MLOps is a massive topic, too extensive to cover fully in a book about edge AI. If
you’re looking to dig deeper, we recommend the following resources—with the caveat
that most MLOps content is written with server-side models, not edge AI, in mind:

• The website ml-ops.org.•
• Introducing MLOps, a book by Mark Treveil et al. (O’Reilly, 2020).•
• Google Cloud’s introduction to MLOps, an excellent technical article.•

Running Algorithms On-Device
Designing algorithms and training models requires one set of tools, while another
is needed to run them efficiently on-device. These include both general-purpose
C++ libraries and highly efficient implementations that are optimized for specific
hardware architectures.

Tools of the Trade | 153

https://ml-ops.org
https://oreil.ly/Ycq8b
https://oreil.ly/dng28

18 Pete Warden has an excellent blog post that outlines the technical challenges in this area.

Math and DSP libraries
Various implementations of common mathematical operations are available, provid‐
ing functionality for both DSP algorithms and deep learning ops—it would be time
consuming to have to implement these fundamental algorithms from scratch. Some
notable examples are:

• Fast Fourier transforms, used heavily in DSP, such as KISS FFT and FFTW.•
• Matrix multiplication libraries such as gemmlowp and ruy.•

Hardware devices often have features designed to improve the performance of com‐
mon algorithms. These are available in hardware-specific libraries, such as the CMSIS
DSP Software Library that provides optimized implementations of many popular
DSP algorithms for Arm’s Cortex-M and Cortex-A hardware.

There are similarly optimized implementations available for deep learning kernels,
such as the CMSIS NN Software Library. Equivalents exist for many modern pro‐
cessor architectures, including microcontrollers and SoCs. When choosing hardware,
you should investigate the availability of optimized kernels, since they can make a
huge (10–100x) difference in latency.

Machine learning inference
One way to run inference on an edge device is to write a custom program that imple‐
ments a specific deep learning model in code that is hand-optimized for the target
architecture. However, this would be time consuming and inflexible: you wouldn’t be
able to reuse your code for new applications or with different hardware, and if you
made any changes to your model you would have to change your entire program.

Developers have come up with various solutions to avoid this problem.18 The most
common approaches are as follows:

Interpreters
An interpreter (or runtime) is a program that reads a file describing a model,
including both its operations and its parameters, and then uses a set of prewritten
operators to execute the model’s operations one after the other. Interpreters are
very flexible: using an interpreter, an identical few lines of code can be used
to run any model interchangeably. The trade-off is that the process of reading
and interpreting a model introduces some operational overhead beyond what
is required for the model’s operations. Interpreters consume additional RAM,
ROM, and CPU cycles.

154 | Chapter 5: Tools and Expertise

https://oreil.ly/UbDtm
https://oreil.ly/BPyFl
https://www.fftw.org
https://oreil.ly/6hCG3
https://oreil.ly/WSrv4
https://oreil.ly/PkVwj
https://oreil.ly/PkVwj
https://oreil.ly/dLOXy

The most widely used interpreters are both from the TensorFlow ecosystem.
TensorFlow Lite was originally designed for cellphones but works on many
popular SoCs, and TensorFlow Lite for Microcontrollers works well on micro‐
controllers and DSPs. Both of them are implemented in C++, but TensorFlow
Lite provides Python and Java APIs for convenience. They both benefit from
operator fusion and quantization provided by the TensorFlow Lite converter.

The kernels used by interpreters can be switched out depending on the device
being targeted, so highly efficient optimized kernels can be used where available.
These are readily available for several common devices and architectures.

Code generation compilers
With a code generation approach, a code-generating compiler takes a model
file as input and transforms it into a program that implements it. For operator
support, the program relies on a library of prewritten operators, calling them in
the correct order and passing the appropriate parameters.

Code generation provides many of the same benefits as an interpreter-based
approach but eliminates the majority of the overhead associated with the inter‐
preter itself. Code generation may even make use of the wide array of prewritten
operators available for interpreters: for example, Edge Impulse’s EON Compiler is
compatible with TensorFlow Lite for Microcontrollers kernels.

Bytecode compilers
It’s possible for a compiler with knowledge of a target to directly generate the
bytecode that implements a model, applying target-specific optimizations along
the way. This results in a highly efficient implementation that makes use of what‐
ever performancing-enhancing features are available on the silicon. For example,
Synaptics’ TENSAI Flow neural network compiler is designed to compile models
for deployment to Synaptics Katana Edge AI processors.

Virtual machines
The big downside of the bytecode compiler approach is that a compiler has to
be written for each device that is going to be targeted, and writing a compiler
is a difficult task. To get around this problem, some compilers target a so-called
virtual machine: an abstraction layer that sits directly above the hardware and
provides instructions that map to various low-level processor capabilities.

The abstraction layer slightly reduces the efficiency, but the benefits can out‐
weigh the drawbacks—although the virtual machine still has to be ported to
new processors. This approach is used by Apache TVM, which also uses an
on-device runtime that can iteratively test different implementations to find the
most efficient.

Tools of the Trade | 155

https://oreil.ly/vc3-p
https://oreil.ly/OHQ9a
https://oreil.ly/_ryR8
https://oreil.ly/GN5oT
https://oreil.ly/1bP6V
https://tvm.apache.org

Hardware description language
A newly emerging trend is the use of special compilers to generate hardware
description language (HDL), the code that describes processor architectures and
is used to program FPGAs and ASICs. Using these techniques, it is possible to
implement a model directly in hardware, which can be extremely efficient.

CFU Playground and Tensil are both open source tools that aim to make it easier
to design custom accelerators using this approach.

Alternative methods
Some accelerator chips are programmed using systems that fall outside of the
normal workflow of code and compilation. For example, some chips with hard‐
ware implementations of neural network kernels provide an interface via which a
model’s weights are written directly to a special memory buffer, separately from
any application code.

Inference and Model Optimization
The optimization of kernels for high performance on specific devices is distinct
from the optimization of models through compression and other techniques. Model
optimizations tend to require their own kernel—and sometimes hardware—support.

For example, to run a quantized model, kernels compatible with the specific level of
quantization must be available. A model quantized to 8-bit integer precision requires
kernels designed to support it, and the same is true of other quantization levels. In
fact, specific kernels are required depending on the data type used, whether that
might be int8, uint8, int16, or so on.

The same is true of other optimization techniques. For example, pruning results in
models that have a large amount of sparsity: they have lots of zeros. By itself, this
doesn’t make any difference to execution time—the model has to be run using special
kernels or hardware that can make use of the sparsity to reduce computation time.
These kernels and hardware have yet to enter wide availability, so pruning remains of
limited utility in the field.

156 | Chapter 5: Tools and Expertise

https://oreil.ly/SzHbP
https://www.tensil.ai

19 Pete Warden’s blog post, “Why Isn’t There More Training on the Edge?” does a great job of illuminating this
topic.

20 Although it will invariably improve over time.

On-device learning
As we learned in “On-Device Training” on page 119, the data and computational
requirements of deep learning training means that on-device training remains of
limited utility. Most of the time, “on-device training” means a simple approach
that involves calculating the distance between embedding vectors, for example if
determining whether the embeddings of two fingerprints are a match.

It’s very rare for actual deep learning training to happen on an edge device. If you do
have a device with the required amount of storage and compute—typically an SoC or
mobile telephone— TensorFlow Lite provides some functionality.

The problem remains that it is incredibly difficult to understand whether a model
trained on-device is actually performing well. On-device deep learning is best avoided
unless you have an extremely good reason to require it.19

Federated learning remains a topic of fascination for many people, but as we learned
earlier in the book it is not a particularly good fit for the vast majority of problems. In
addition, the tooling around federated learning is still primitive and experimental.20

Many people feel drawn to follow the federated learning rabbit hole and end up
wasting time: the chance that a project really needs it is very slim. However, if you
really feel compelled to dig deeper, TensorFlow Federated is a good resource.

Embedded Software Engineering and Electronics
Edge AI is a subfield of embedded software engineering, which is closely tied to
the practical disciplines of electrical engineering and electronics. Each of these areas
involves multitudes of tools and techniques—there’s no way we’d have space in this
book to cover them all.

Instead, we’ll step through the parts that specifically matter for developing AI at
the edge.

Tools of the Trade | 157

https://oreil.ly/vo7-R
https://oreil.ly/WDBo7
https://oreil.ly/6dxOr

Just Getting Started

If you’re prototyping your own edge AI project but don’t have
much embedded experience, Arduino and Arduino Pro products
are a great place to start. Arduino has created an embedded devel‐
opment environment that is easy for beginners to use but still pow‐
erful enough for building real applications—perfect if you’re an ML
engineer beginning to work with edge devices, or a newcomer to
both fields. The Arduino team have understood the potential of the
edge AI movement since the very beginning and have contributed
a lot to its growth.

Embedded hardware tools
Developing embedded software is challenging due to the nature of embedded devices.
Software is harder to debug when it’s running on a separate device, especially one
with limited ways to display its internal state. Embedded programs must take care
of everything from basic hardware integration—it’s common to have to write your
own drivers for hardware such as sensors—to the complex handshakes of low-level
communications protocols.

As such, embedded development requires some tools that would appear unusual to
other software engineers. Some of these items include:

• Device programmers, which are pieces of hardware that allow a developer to•
upload new programs to an embedded device. They are often device specific.

• Debug probes, hardware devices that connect to embedded processors and allow•
analysis of a program at runtime. They are also device specific.

• USB to UART adapters, which send and receive arbitrary data between the•
developer’s workstation and the embedded device. They are generic.

• Multimeters, which measure voltage, current, and resistance and can be used•
to understand the state of an embedded circuit as it is being controlled by a
program.

• Oscilloscopes, which measure signals on the device or PCB, expressed as voltage•
over time.

These tools are necessary in order to reach into, manipulate, and understand the
states of embedded devices. For example, to test a program is running correctly you
might have it toggle a specific pin on the processor when it gets to a certain point.
You would then use a multimeter to measure whether the pin has been toggled.
Another common way to communicate with an embedded device is via a serial
(UART) cable, which can send and receive data at a relatively low frequency—but still
high enough to transfer sensor data in a reasonable timeframe.

158 | Chapter 5: Tools and Expertise

https://www.arduino.cc
https://www.arduino.cc/pro

Development boards
An embedded processor on its own is just a little piece of sand, wrapped in plastic.
In order to actually do anything, it requires a small constellation of other electronic
components to be wired up to it. As we saw in “Boards and Devices” on page 79,
development boards (or dev boards) provide a convenient ready-to-go platform that
includes an embedded processor and various inputs and outputs, often including
some sensors.

The goal of a dev board is to allow embedded engineers to evaluate a particular
chip for suitability for a project, and allow software development to proceed without
being blocked by the hardware development process. Once a working iteration of
the product’s own hardware is ready, development can move there. The exception is
with rapid prototyping platforms, such as Arduino Pro, which are designed for use in
small-batch production designs.

Dev boards are available for most families of embedded processors. When deciding
on hardware, it’s a good idea to obtain a few different dev boards to experiment with.
For example, you might try to run an early version of your deep learning model on a
few different dev boards to understand their relative performance.

Some end-to-end platforms (see “End-to-End Platforms for Edge AI” on page 162)
provide deep integration with dev boards, allowing you to capture data from their
sensors or deploy and evaluate models without writing a single line of code. This can
be extremely useful in development and testing.

Embedded software tools
For the purposes of edge AI, embedded software engineering generally means C++
development. This can be done in your text editor of choice, but it’s also common for
embedded processor vendors to provide their own integrated development environ‐
ments (IDEs) that integrate neatly with their hardware and make it easier to upload
and debug code.

Vendors will often provide SDKs, drivers, and libraries that can be used on their
hardware to help you access various processor features—but they are not always great
quality, often provided more as a proof of concept than as production-quality code.

To reduce the amount of boilerplate code you need to write, you may choose to use a
real-time operating system (RTOS). An RTOS provides the functionality of a simple
operating system, but it arrives as a bunch of library code that you compile alongside
your own program. You can then call the RTOS APIs to do things such as controlling
peripherals or performing network communication.

Embedded development frequently involves complex toolchains: programs and
scripts that are supplied by the hardware vendor and are used to take code from
a text file, turn it into a program, and “flash” it onto a hardware device.

Tools of the Trade | 159

https://www.arduino.cc/pro

The workflow generally looks like this:

1. Make changes to your source code.1.
2. Run a compiler (supplied by the processor vendor) and linker to transform your2.

code into a binary.
3. Run a script to flash your code onto the embedded device.3.
4. Use a serial connection to communicate with the device and test your code.4.

When your code is running on-device, you can often use a hardware tool called a
debug probe to inspect it from your development machine. This allows you to debug
as if you were running the code locally, setting break points, examining variables, and
stepping through code.

Some parts of your code will be generic C++, and you’ll be able to run it on your
development machine with no problem, perhaps in the form of unit tests. However,
you’ll also end up with plenty of code that integrates with the specific hardware APIs
of your processor. It’s not possible to run that on your development machine—so you
can either shrug your shoulders and test it on-device only, or you can attempt to use
an emulator.

Emulators and simulators
An emulator is a piece of software that aims to reproduce a processor virtually,
running on your development machine, so that you can execute your embedded code
without having to flash it to the device. It will never be a perfect representation of the
real hardware—for example, it won’t necessarily run at the exact same speed as the
program on real hardware—but it can be close enough to be a valuable tool.

If you need to determine how fast a program will run, for example in order to
estimate the latency of an AI algorithm, a cycle-accurate simulator will allow you to
determine the exact number of clock cycles that will run on the real hardware. You
can divide this number by the clock rate to give you a precise estimate of latency. The
emulator won’t actually run at that speed, but it will give you the information you
need to create an estimate.

Simulation is the use of software to simulate an entire device, including an emulated
processor plus all of the other devices it may be attached to—including sensors
and communications hardware. Some simulators can even represent multiprocessor
boards, or entire networks of interconnected devices.

Emulators aren’t available for all processors, but Renode is a powerful emulation and
simulation environment for many common processor architectures, and Arm Virtual
Hardware allows you to emulate Arm processors in the cloud.

160 | Chapter 5: Tools and Expertise

https://renode.io
https://oreil.ly/iXED4
https://oreil.ly/iXED4

Embedded Linux
Most of the specialized embedded tools we’ve mentioned so far are intended for
working with microcontrollers and other bare-metal devices. SoCs and edge servers
are another story: with enough computing power and memory to host a full-blown
operating system, SoC development is much more similar to development for per‐
sonal computers and web servers. This is one of their major benefits: developers don’t
need quite so many specialized skills.

A typical SoC will run a distribution of Linux, with all the helpful tools and libraries
that that implies. Programming can be done in nearly any language, with the same
trade-offs as on any other platform: low-level languages like C++ are fast and effi‐
cient, while high-level languages like Python are flexible and easy to use.

Google provides a TensorFlow Lite runtime that is prebuilt for some popular plat‐
forms, and you’ll have the benefit of being able to use Python computing libraries
directly: for example, you can use SciPy’s digital signal processing functions within
your application.

Embedded Linux devices can even make use of containerization for deployment:
embedded applications can be packaged as Linux containers, making them easy to
install and use.

With SoCs, it’s relatively common to use an off-the-shelf board in a production
installation. Many vendors exist who design and sell SoC-based platforms designed
for specific applications. For example, you can buy devices in ruggedized housing
designed for industrial deployments. To deploy, you just connect whatever sensors
are required and install your application.

One challenge working with SoCs is that despite the familiar Linux environment,
prebuilt packages are not always available. You may have to get used to building
libraries from source in order to make your applications work, which can get a little
involved at times.

It’s important to think about security when working with devices that have fully
fledged operating systems. The embedded Linux running on an SoC needs to be
locked down as tightly as any other machine on your network to avoid it becoming
a vector for attacks. Insecure IoT devices are notorious for being compromised by
hackers and used to attack other systems.

Automated hardware testing
Modern software engineering best practices encourage the use of continuous integra‐
tion tests: every code change is put through its paces by a suite of automated tests.
Creating automated tests for embedded applications can be difficult, since code that
interacts with hardware can’t be tested on a development machine; it can only be
tested on the target device itself.

Tools of the Trade | 161

https://oreil.ly/VAk82

However, it’s easy for an embedded device to get into a state where it is unable to run
tests. For example, if the program crashes it may not be possible to restart the device
without physically interacting with it. Similarly, uploading new firmware may require
physical intervention.

To get around this problem, developers build automated hardware testing systems
that can interact with embedded devices to facilitate easier testing. These systems
are a combination of software and hardware that can do things like flash new code,
power cycle devices between tests, and even provide input to I/O ports or sensors.

Automated hardware testing systems are usually custom built. They are based around
a host system (perhaps an embedded device itself) that is connected to whatever
continuous integration tools the team is using, as well as being connected to the
devices that are intended to run the code.

If integration with a sensor needs to be tested—for example, a microphone that is
supposed to be detecting a keyword—the host system might even feature a speaker
that can issue keywords on demand.

End-to-End Platforms for Edge AI
In an ideal world, any team with expertise in a certain domain would be able to
capture its knowledge and deploy as edge AI. People with deep insight into diverse
fields like healthcare, agriculture, manufacturing, and consumer technology should
be able to take what they know and use it to build amazing AI-powered products.

Unfortunately, with so many moving parts and so much to learn, it’s easy to feel
overwhelmed by the edge AI development process. A huge amount of the workflow
is focused not on domain knowledge but on the arcane engineering skills required to
build a complex product across multiple fronts, including machine learning, digital
signal processing, and low-level software engineering on embedded hardware.

In the early days, only a small number of technologists—who happened, by accident,
to have all of the required skills—were able to work with edge AI technology. How‐
ever, over the past few years a vibrant ecosystem of tools has sprung up that is
designed to reduce the barriers to entry and make it possible for people without back‐
grounds in machine learning or embedded systems to build fantastic new products.

End-to-end edge AI platforms are designed to assist developers with the entire
process of developing an application: collecting, managing, and exploring datasets;
performing feature engineering and digital signal processing; training machine learn‐
ing models; optimizing algorithms for embedded hardware; generating efficient low-
level code; deploying to embedded systems; and evaluating systems’ performance on
real-world data. This flow is summarized in Figure 5-5.

162 | Chapter 5: Tools and Expertise

21 The paper by Kanav Anand et al., “Black Magic in Deep Learning: How Human Skill Impacts Network
Training” (arXiv, 2020), shows that prior experience can have a strong impact on performance when tuning
ML models by hand, which suggests the value of AutoML tools.

Figure 5-5. A major advantage of using an end-to-end platform is that it includes all of
the components required for an iterative, data-driven feedback loop; that said, the most
%exible platforms provide points for integration with external tools (Image courtesy of
Edge Impulse Inc.)

End-to-end platforms are designed to apply the principles of MLOps to the specific
process of creating algorithms that will run on embedded devices. As highly integra‐
ted tools, they are able to take most of the friction out of the development process:
far less time is wasted in getting different parts of a toolchain to work together, and a
holistic view of the entire process allows for helpful guidance that massively reduces
exposure to risk.

For example, an end-to-end platform can analyze a dataset in order to help a user
select the type of ML model best suited to it, or it might provide estimates of
on-device performance that can help the developer choose an algorithm or embedded
processor. A platform may perform AutoML with the goal of finding the best possible
combination of signal processing and model that will fit on a specific device, within
a maximum specified latency, or within a limited power budget.21 A wide range of
ready-to-deploy algorithms or architectures are typically available, preoptimized for
various processors.

Platforms can also help teams collaborate. For instance, a cloud-based edge AI plat‐
form can act as a central repository for a team’s datasets and workflow artifacts. APIs
and configurable ML pipelines allow teams to automate routine tasks: so, for exam‐
ple, a new version of a model might be trained, tested, and deployed whenever new
data is available. And visualizations and low-code user interfaces make it possible for

Tools of the Trade | 163

https://oreil.ly/-TlS9
https://oreil.ly/-TlS9

anyone on a team to contribute insight, not just those with existing data science or
embedded engineering skills.

Cloud-based platforms also allow developers to benefit from distributed compute
without having to administer their own systems. For example, data processing and
model training might occur on powerful cloud servers that are managed by the
platform, not by the user. This simplifies the process of running AutoML, where
experiments may be run in parallel—as shown in Figure 5-6.

Figure 5-6. An AutoML sweep conducted using Edge Impulse’s EON Tuner; with end-to-
end platforms, optimization of signal processing and machine learning algorithms can
occur hand in hand, incorporating estimates of on-device latency and memory use

The best end-to-end platforms have a focus on tightening all the feedback loops in
the edge AI workflow. They make it possible to iterate rapidly, moving back and forth
between development and testing with minimal overhead. This makes it far easier to
build a successful product, since you’re able to immediately detect and course-correct
on any issues.

Traditionally, getting an algorithm to run on-device for the first time—using real
sensor data—has been a tricky process. Some end-to-end platforms provide prebuilt

164 | Chapter 5: Tools and Expertise

https://oreil.ly/QP1pZ

firmwares for popular development boards, allowing you to capture sensor data and
deploy and test models without writing any code. This enables you to close the loop
between model development and real-world testing.

Another big benefit provided by end-to-end platforms is the ability to conveniently
try out a variety of hardware to find the best fit. The same model can potentially
be deployed in an optimized form to a multitude of microcontrollers, SoCs, and
ML accelerators with a couple of clicks, allowing a development team to compare
performance and determine the right choice for their application. Done by hand, this
process could take weeks.

The AI ecosystem is built on top of open source tools, and good end-to-end plat‐
forms will allow you to continue using them however you want; they will integrate
with industry standard technologies throughout the workflow and won’t rely on
vendor lock-in to keep you as a customer. You should be able to easily export your
data, models, and training code, and it should be simple to create a mixed MLOps
stack that incorporates parts of multiple solutions.

End-to-End or Roll Your Own?
You may be wondering which is a better choice: using an end-to-end platform or
assembling your own custom set of tools from different sources. At the time of
writing, it’s pretty clear that the vast majority of projects will benefit from the produc‐
tivity, structure, and cross-workflow integration provided by an end-to-end platform.

Even if you have strong existing skills in data science, signal processing, or embed‐
ded engineering, the process of setting up your own toolchain from scratch can be
extremely tough. Depending on your target, you may find that you aren’t even able to
install the required tools side by side without resorting to containerization in order to
isolate dependencies.

Beyond startup costs, individual tools on their own won’t provide the type of immedi‐
ate feedback and seamless iterative workflow required to build a successful project.
You’ll have to create your own automation between tools, which will result in count‐
less scripts—and further dependencies—that need to be tracked, maintained, and
scaled to serve your whole team.

In addition, end-to-end platforms are designed to provide the appropriate guidance
to fill in your blind spots. Almost nobody has all of the required skills to build
an edge AI application on their own. For example, someone with deep domain
expertise is unlikely to also have a strong intuition about which deep learning model
architectures are most efficient on a specific model of embedded processor.

The teams developing end-to-end platforms for edge AI have spent years building
and improving them—so while it’s certainly possible for a sufficiently large enterprise
organization to build their own internal platform, it would be a multimillion dollar

Tools of the Trade | 165

investment in time and resources. It’s very unlikely that the cost-benefit analysis
would make sense, which is why some of the world’s biggest, most sophisticated
organizations—from government organizations like NASA to industrial giants like
Bosch—are users of end-to-end platforms.

A major, valid concern is around flexibility and openness. If a company decides to use
an end-to-end platform, what happens if they need to use techniques—for example,
specific algorithms—that aren’t available in the platform?

Fortunately, the best platforms already account for this and provide easy integration
points for interoperability. New algorithms, data stores, deployment targets, and eval‐
uation methods can be connected seamlessly, and APIs allow end-to-end platforms
to be interwoven with other tools, including existing internal systems and alternative
open source AI tooling.

Another concern is cost. End-to-end platforms are typically supported by an enter‐
prise subscription fee that includes technical support and compute time, with many
products also offering a free tier for individual projects. One platform, Edge Impulse,
has a large, active community of free users who provide support to one another,
including sharing example projects for inspiration and technical guidance.

If you don’t have a budget, it’s absolutely possible to use a product’s free tier to
build a successful project. If you do have a budget, platforms are typically quite
affordable—especially when compared to the time cost of setting up and managing
your own environment. The subscription cost typically buys you the type of heavy
duty functionality that is required when dealing with big enterprise datasets and large
teams.

Given the absurd complexity of the edge AI toolchain, it’s very easy to recommend
end-to-end edge AI platforms as the best starting point for the vast majority of
projects. In the uncommon case that you require a feature that isn’t supported,
high-quality platforms make it simple to integrate with external tools—so you can use
the platform as a foundation and extend it however you need.

At this point, it’s worth addressing the fact that the authors of this book, Daniel
and Jenny, are part of the team that has designed and developed Edge Impulse, an
extremely popular end-to-end edge AI development platform. It’s always important
to take recommendations with a pinch of salt when the people doing the recommen‐
dation have a vested interest! Since we work on an end-to-end tool, how can we be
expected to recommend anything else?

Hopefully, the history of this book provides some reassurance. One of the authors,
Dan, was coauthor of TinyML—a book that helped introduce the field of embedded
machine learning to a wider audience. TinyML introduces the process of building
edge AI software using open source tools. At about 500 pages, it’s not a short guide—

166 | Chapter 5: Tools and Expertise

https://edgeimpulse.com
https://oreil.ly/-_tKt

22 Pete Warden et al., “Machine Learning Sensors”, arXiv, 2022.

but it only covers the absolute basics, and it relies on its readers learning both Python
and C++. Working directly with low-level tools is not a productive way to go.

Writing TinyML inspired both of its authors to try and make life easier for develop‐
ers. Dan went on to join Edge Impulse as its founding engineer, inspired by a demo
where the company’s CEO built and deployed a deep learning model for activity
classification live in under ten minutes. The other coauthor of TinyML, Pete Warden,
is working to simplify machine learning deployment by integrating sensors and ML
as closely as possible.

Machine Learning Sensors
Building an effective edge AI product requires a lot of difficult work and specialized
knowledge. Another concept that could help make the task easier is the idea of
machine learning sensors. Proposed in a 2022 paper22 by a team led by Pete Warden,
ML sensors are designed to be as simple to work with as ordinary sensors—but to
include a dash of intelligence.

For example, a “person detector” ML sensor might be provided as a single chip that
includes an image sensor, a processor, and a deep learning model that can identify
human beings from images. As an interface, the ML sensor could expose a single
digital pin that toggles high when a person is detected or low when there is nobody
there.

Integrating with an ML sensor would be far easier than training and incorporating
a machine learning model (along with all of the required dependencies) into an
embedded application, making it trivial to add intelligence to devices. The trade-off is
reduced flexibility—although if required, models could be customized via integration
with end-to-end platforms.

At the time of writing, Pete’s company Useful Sensors is selling the Person Sensor, a
small, low-power device that can detect and locate human faces. You can find more
general information at ML Sensors.

Summary
We’ve now encountered the people, skills, and tools that are prerequisites to success‐
ful edge AI projects. From the next chapter onward, we’ll be taking a journey through
the iterative development workflow that real-world teams use to build applications.

Summary | 167

https://oreil.ly/xOtDp
https://usefulsensors.com
https://mlsensors.org

CHAPTER 6

Understanding and Framing Problems

The next five chapters provide a roadmap for working with edge AI. We’ll establish
best practices for:

• Viewing the problems you want to solve through the lens of edge AI•
• Building datasets that allow you to you train models and evaluate algorithms•
• Designing applications that make use of edge AI technologies•
• Developing effective applications through an iterative process•
• Testing edge AI applications, deploying them, and monitoring them in the field•

For this chapter in particular, we’ll start by introducing a high-level, general workflow
for edge AI projects. This should give you a sense of how everything will fit together.
After that we’ll learn how to evaluate projects to make sure they are a good fit for
edge AI, then walk through the process of identifying which types of algorithms and
hardware make sense for a given problem—and start to think about planning our
implementation.

The Edge AI Work#ow
Like any sophisticated engineering project, a typical edge AI project involves multiple
tracks of work, some of which run in parallel. Figure 6-1 shows them in context.

169

Figure 6-1. #e edge AI work%ow, grouped into the “discover” and “test and iterate”
stages

The process can be split roughly into two chunks—labeled in the diagram as discover
and test and iterate. The first chunk, discover, involves developing a deep understand‐
ing of the problem you are trying to solve, the resources you have at your disposal,
and the space of possible solutions. This is where you do the up-front work of
figuring out what you would like (and what is realistic) to achieve.

The second chunk, test and iterate, is a continual process of refinement that takes
you from initial prototype through to a production-ready application. It spans time
before and after development—in machine learning, your application is never truly
"nished but needs to be monitored, supported, and iterated on after being deployed
in the field. This continual improvements happens across all parts of your project in
parallel—application, dataset, algorithms, and hardware.

The most important part of this process is the feedback loop (see Figure 6-2) that ena‐
bles continuous improvement. The more feedback you can create between different
aspects of your project, the more successful your project will be. For example, the
results of your model’s performance on different types of data can be fed back into
the data gathering process, helping you build a diverse and representative dataset that
covers the entire space of potential inputs.

We’ll be covering this whole workflow over the next few chapters. The discover stages
are represented in Chapters 6, 7, and 8, while the test and iterate stages—including
deployment and support—are covered in Chapters 9 and 10.

170 | Chapter 6: Understanding and Framing Problems

Figure 6-2. A few examples of possible feedback between application, dataset, algo‐
rithms, and hardware; the four parts will change and evolve as a project proceeds, and
any change in one aspect will need to be re%ected in another

Core to the success of any technology project (and arguably any
project in general) is the task of managing risk. Edge AI projects
are uniquely risky, thanks to their combination of hardware and
software and their dependence on complex algorithms and data-
driven development.
At each stage in the workflow, we’ll learn techniques you can use to
keep risk to a minimum and improve your chances of success.

Responsible AI in the Edge AI Work#ow
As we’ve learned, AI applications are especially prone to propagating social harms.
There are many types of issues that can lead to unexpectedly poor performance in
the real world. This makes careful analysis of potential risks, and their likelihood of
causing harm, a critical part of the edge AI development workflow.

It isn’t enough to do a single ethical review at the start of a project, or a final one at
the end. Since new information will come to light over the course of a project, and
many decisions will be taken that have downstream effects, risk analysis needs to be
happening at every stage along the way, giving you time to course-correct if required.

In this book we’ll be reflecting on ethical design during every step of the process. You
shouldn’t think of this as an optional extra—it’s a part of the core engineering and
product management work that is necessary for a successful project. The nightmare
scenario for teams working with edge AI is that issues are discovered only after
a system has been deployed to production. Nobody wants to be responsible for a
product recall or actual harm being caused.

By considering social factors in our risk analysis throughout the development pro‐
cess, we’ll maximize our ability to identify challenges before they reach production—
and increase the quality of our work.

The Edge AI Work#ow | 171

Do I Need Edge AI?
Artificial intelligence and edge compute are both sophisticated technologies, each
involving an entire landscape of considerations. Working with either of them involves
making trade-offs between capability and complexity. For many projects, the burden
of complexity may outweigh the benefits in capability that come from working with
them.

With this in mind, for any potential application, it’s very important to try to under‐
stand whether the risk is worth the reward. The answer depends heavily on context,
including elements such as:

• The specific requirements of the application•
• The skills of the team that will be building it•
• The available budgets for engineering, data collection, and long-term support•
• The amount of time available for delivery•

In the following sections, we’ll break down the questions that we need to ask in order
to decide whether a project is a good fit for edge AI technologies. This is a great
exercise to begin with since it will also shed light on many of the other necessary
considerations for the discover phase of a project.

While it can be exciting to try to find new opportunities for edge
AI, it’s important to approach problems with an open mind and not
assume that a technological solution is the right answer. Instead
of trying to fit edge AI into a problem from the beginning, focus
on understanding the problem and designing the right solution to
address it. This solution may involve edge AI or it may not.

Describing a Problem
Describing a problem is the first step in figuring out whether edge AI is a good fit
to solve it. You should try to summarize a problem in a few sentences and bullet
points—keep it short and to the point. A good description should include:

• A high-level summary of the scenario, including any existing solution•
• Problems currently faced•
• Constraints that must be worked around•

In “Deep Dive: Spotting Rare Wildlife with Trail Cameras” on page 38, we discussed
a possible application for edge AI in wildlife monitoring. Following is an example of
how we might capture that use case as a problem description.

172 | Chapter 6: Understanding and Framing Problems

Problem Description: Trail Cameras
Summary: Wildlife researchers sometimes need to estimate animal population and
activity in remote areas. One way of doing this is to install trail cameras in remote
locations to monitor specific animal species. The devices typically use a passive infra‐
red (PIR) motion sensor to detect motion, triggering a camera to take a photograph.
Photographs are saved to a memory card. The memory card is collected periodically
to obtain the photos, which are then analyzed by researchers.

Problems:

• The PIR can be triggered by nontarget species or moving vegetation, filling up•
the memory card with useless photos and reducing battery life.

• No animal activity data is available until the memory card has been collected and•
analyzed.

• It’s time consuming and expensive to send somebody to collect a memory card•
from a remote location.

• If the memory card is collected too infrequently, it will fill up and important data•
will be missed.

• If the memory card is collected too frequently, then money is being wasted on•
travel expenses.

Constraints:

• Trail cameras run on battery power and must be energy efficient.•
• High-bandwidth data connections are expensive in the field.•
• Research budgets are typically low.•

The exact format of your problem description doesn’t matter as much as the content.
By capturing the exact problems and constraints, we can consider them while evalu‐
ating possible solutions.

Do I Need to Deploy to the Edge?
At this point in the book, we’re very familiar with the model in the section “To
Understand the Benefits of Edge AI, Just BLERP” on page 14 for expressing the
benefits of edge AI:

• Bandwidth•
• Latency•
• Economics•

Do I Need Edge AI? | 173

• Reliability•
• Privacy•

BLERP is the perfect tool to help us analyze our problem description and evaluate
whether it might benefit from an edge architecture. A good way to do this is to create
bullet points for each BLERP term.

To illustrate, let’s explore bandwidth:

• Due to cost, trail cameras don’t have access to much bandwidth. This makes•
doing work on-device important.

• If we could analyze photos on-device, we could send the resulting information•
(much smaller than raw images) up to the cloud.

• This could help avoid expensive trips into the field to collect memory cards.•

By brainstorming the potential impact of each term, we start to understand whether
BLERP benefits are important for this problem. Once you’re done brainstorming and
summarizing, you’ll end up with something like the next BLERP analysis, taken from
“Deep Dive: Spotting Rare Wildlife with Trail Cameras” on page 38.

BLERP Analysis: Trail Cameras
Bandwidth

Camera traps are often deployed in remote areas with low connectivity—perhaps
with expensive, low-bandwidth satellite as the only option. With edge AI, the
number of photos taken can be reduced enough to make it possible to transmit
them all.

Latency
Without edge AI, the latency involved with sending a researcher to collect photos
from camera traps could be measured in months! With edge AI and a low-power
radio connection, it’s possible to analyze photos immediately and obtain useful
information without having to wait.

Economics
Avoiding trips out into the field saves large amounts of money; so does avoiding
unnecessary use of expensive satellite radio.

Reliability
If useless photos can be discarded, the memory card will take longer to fill up.

Privacy
An edge AI camera can discard photos of humans on the trail, preserving the
privacy of other trail users (such as local people, or hikers).

174 | Chapter 6: Understanding and Framing Problems

In this case, there are clear and obvious benefits to deploying on the edge across
multiple BLERP terms. In other cases, it may not be so evident—for example, there
might not be benefits under every single term. That doesn’t necessarily mean that
edge deployment isn’t a good fit. As long as there’s enough compelling benefit in any
category it is worth considering further.

Things that don’t work well on the edge
In some situations, you may find that your problem does not fit BLERP very well at
all. The following is an example description for a different problem.

Problem Description: Medical Imaging
A medical imaging device creates images that represent the interior of a patient’s
body. Specially trained doctors use these images to help diagnose certain medical
conditions. The device is very large and is typically located in a major hospital. After
scanning a patient, the device stores images on a hard disk attached to a computer
network. Special software must be used to view the images.

Problems:

• Diagnosing medical conditions by looking at images is challenging and requires•
medical training.

• If trained doctors are not available, patients may have to wait for a diagnosis.•
• Doctors can only view images on certain computers that have the imaging•

software installed.

Constraints:

• Images represent sensitive patient information that must be kept secure.•
• Imaging devices are very large and cannot be moved around.•
• Imaging devices are very expensive.•

From the description, it’s clear that there are some problems worth solving here: it’s
challenging for people to diagnose medical conditions based on imaging data, and
patients may have to wait for a diagnosis depending on availability of equipment or
experts. Perhaps there’s some potential for AI to help doctors analyze images.

However, the question we need to answer is whether this is a good problem to try
to solve using edge computing. To do this, let’s try and brainstorm some potential
benefits via BLERP (shown in the sidebar).

Do I Need Edge AI? | 175

1 While the case could be made that a computer on a hospital network is a form of edge device, many major
hospitals have on-site data centers and are not subject to the typical constraints of edge computing.

BLERP Analysis: Medical Imaging
Bandwidth

None. The imaging devices are located in major hospitals that typically have
good internet connections, and they are already connected to a computer net‐
work. No benefit from reducing bandwidth requirements.

Latency
It would be helpful for patients to have faster access to the diagnosis.

Economics
Performing analysis using AI would reduce reliance on doctors’ time, which is
expensive.

Reliability
Doctors could use AI analysis to help improve their success at diagnosis.

Privacy
AI analysis could reduce the need to expose sensitive patient data.

Superficially, these sound like compelling reasons. However, if we dig a little deeper,
it’s clear that most of these benefits are attainable without edge computing. Because
the imaging device is located in a hospital, there’s no major benefit to performing
analysis on a potentially resource-constrained “edge” device. Instead, we could use a
standard computer, either attached to the hospital’s network or in the cloud.1 Privacy
concerns could be addressed using techniques such as federated learning without
using any tools specifically associated with edge AI.

In this case, a single fact—that a reliable network connection is already available—
makes it unnecessary to use edge compute. But why not use it anyway? Does it make
a difference whether we run compute on the edge or not?

Disadvantages of edge compute
While edge compute can have some massive benefits, especially in conjunction with
AI, there are some very good reasons why most compute has moved into the cloud
over the past decade. If the BLERP framework doesn’t highlight some very good
reasons to do work on the edge, you may be better off doing your information
processing on a cloud server.

Here are some things that can make edge applications a challenge:

176 | Chapter 6: Understanding and Framing Problems

Development complexity
Writing and maintaining embedded applications is difficult, especially with
smaller targets. The simpler your embedded code, the better. Even if an embed‐
ded device is required in order to collect data, it may make sense to simplify
engineering by hosting the more complex application logic in the cloud.

Sta&ng
Embedded development requires very specific skills, and while a cloud applica‐
tion can be built and maintained by many types of engineers, embedded engi‐
neering talent can be harder to find. If your organization doesn’t have access to
embedded engineering talent, it may make sense to de-risk a project by leaving
compute in the cloud.

Limited compute
Even the most powerful edge devices are nowhere near as capable as a beefy
cloud server with access to a GPU. Some applications require levels of compute
that would be unreasonable to deliver in the field—for example, some language
models are gigabytes in size and require a GPU to achieve low latency.

Deployment complexity
If you plan to update your application after it has been deployed, edge compute
can create some problems. Updating edge firmware can be risky—devices can
be “bricked” by a bug or a power outage at the wrong moment. Managing the
application versions installed across a fleet of devices can also be a challenge.
Working around these challenges is possible, but it requires engineering time. It
may be simpler just to host your application logic in the cloud, where it can be
updated with minimal fuss.

Hardware and support costs
Deploying and supporting a network of edge devices can be expensive. The
expense can grow even higher if you require high-end devices with acceleration
for machine learning workloads, or custom hardware designed for a specific
purpose. Depending on the application, it may be cheaper to use less capable
devices to collect data and send it to the cloud for processing.

Flexibility
If the workloads you wish to run outgrow your edge hardware, or your applica‐
tion changes substantially, you may need to buy new hardware to replace it. In
contrast, cloud workloads can be scaled and modified at the click of a button.

Security
There is some security risk involved with allowing physical access to the imple‐
mentations of your AI algorithms. In some cases, cloud compute may help
reduce the risk. There’ll be more on security later in the book.

Do I Need Edge AI? | 177

As we saw in “Multi-Device Architectures” on page 82, it’s possible to split compute
between edge devices and the cloud. This can be a helpful way to blend the bene‐
fits of each, especially when devices are deployed within controlled environments
where reliable connectivity and power are available, such as homes or factories. For
instance, a smart speaker can preserve privacy by doing wake word detection on the
edge while still benefiting from powerful cloud servers to run large, highly sophistica‐
ted transcription and NLP models. In an industrial setting, an edge computer vision
system could identify potential manufacturing defects with extremely low latency
before invoking a cloud model to precisely categorize the defects and determine the
appropriate response.

Do I Need Machine Learning?
As we learned in Chapter 1, AI doesn’t always require machine learning. As a cate‐
gory, ML algorithms have various benefits and drawbacks that make them ideal for
some applications but of limited utility for others.

It’s important to identify whether your use case is a good fit for ML
early on in the development process. ML-based projects involve a
substantially different workflow, which will impact your timeline
and budget.

For a given edge AI problem, you’ll typically have to choose between a machine
learning solution and a rule-based or heuristic solution. As we learned in “Condition‐
als and heuristics” on page 101, rule-based systems are designed by human beings
using domain knowledge. They can make use of anything from basic arithmetic to
incredibly complex physics equations. Here are some examples of applied heuristic
algorithms in edge devices:

• A water kettle that shuts off when the temperature reaches the boiling point•
• A diabetic insulin pump that dispenses precise doses of insulin based on blood•

glucose levels
• A driver assist feature that uses traditional computer vision (see “Image feature•

detection” on page 92) to identify lane markings and center a car between them
• The autopilot that flies a jumbo jet aircraft on international routes•
• The guidance systems of a space rocket headed to Mars•

Each of these examples, from simple to sophisticated, relies on domain knowledge.
For example, the insulin pump’s algorithm is based on knowledge of the human
blood sugar regulation system, and the space rocket’s guidance system is based on

178 | Chapter 6: Understanding and Framing Problems

knowledge of physics, aerodynamics (at least for part of the trip), and the handling
characteristics of the vehicle.

In each case, the systems involved are governed by strict rules. These rules may be
complex, and their discovery might have taken thousands of years of human history,
but at the end of the day they can be described with acceptable accuracy by engineers
using mathematical formulas.

Often, digital signal processing algorithms are used in conjunction with rule-based
systems. A little processing can go a long way in making it possible to react to input
using simple rules. For example, a driver assist feature might use DSP in the form
of image feature detection in order to reduce a complex image into a set of simple
vectors representing lane markings. This makes it much easier to determine whether
to steer the car left or right.

The nice thing about rule-based systems is that their limits are known exactly, mean‐
ing that it can be proven when they work. A heuristic algorithm is based on a system
that is well understood. It’s possible to establish the mathematical correctness of an
algorithm with regards to the underlying rules it is designed to model. This makes
them reliable, trustworthy, and safe.

If there’s a rule-based solution to your problem, you should almost
certainly choose it. Many problems can be solved in an elegant
manner using rules and heuristics, and they can prove much eas‐
ier to develop, support, and interpret than the machine learning
alternative. They also tend to be far less demanding in terms of
computational power.
ML sounds exciting, but it’s risky to use it unless you have a clear
need. Heuristics are what landed man on the moon; there’s a fair
chance your problem is easier than that.

Unfortunately, not all problems can be solved with rule-based algorithms. Back in
“Conditionals and heuristics” on page 101, we encountered their two main weak
points:

Problems with rules that are prohibitively di&cult to discover.
For instance, it could require a huge amount of research and development to
discover the system of algorithms that underlies your complex, noisy, high fre‐
quency sensor data. Even if it’s possible to describe a system mathematically, it
could be out of reach given your budget and time frame.

Do I Need Edge AI? | 179

2 As we’ll see, domain expertise is still critical in training and evaluating ML models. However, ML-based
approaches potentially enable experts with knowledge of a specific problem area to get good results without
having to enlist as much outside help in other areas (such as signal processing).

Problems with large numbers of variables.
For example, there may simply be too many inputs for a rule-based system to be
feasible. This is a common problem with image data, which is incredibly highly
dimensional and also very noisy. It’s tough to write an equation that describes the
appearance of a dog.

For nontrivial problems, good implementations of rule-based algorithms may depend
on extensive research, domain knowledge, and relevant engineering skills. These are
not always available for a given project. The weak spots for heuristics provide an
opportunity for ML to shine.

Reasons to use ML
While rule-based systems often depend on a scientific understanding of the processes
they interact with, ML algorithms can learn an approximation of the relationships
between variables through exposure to the data itself.

This can certainly make life easier. Here are some situations where it could make
sense to consider trying ML, in order of validity:

• Your situation and data are too complex or noisy to model by conventional•
means.

• Too much fundamental research would be required to find rule-based solutions.•
• You do not have access to the domain expertise necessary to implement a rule-•

based system.2

If you find yourself in one of these situations, machine learning can be a huge help.
The following sidebar provides a nice example.

Building an Arti"cial Nose
IoT engineer Benjamin Cabé wanted to build an artificial nose—a device that can
identify objects and substances by their distinctive smell. His initial goal was to try
and distinguish between different types of alcoholic spirits: vodka, rum, and Scotch
(although it works for many foods and drinks, as you can see in Figure 6-3).

Benjamin had access to a cheap gas sensor designed to measure levels of several
different types of gases. To build a rule-based algorithm for distinguishing between
the spirits, he would have had to perform a chemical analysis of the various drinks,
understand their composition, and work backwards from there to determine which

180 | Chapter 6: Understanding and Framing Problems

https://oreil.ly/f_7_8

gases to look out for. He’d also have to account for any gases that might be present in
the surrounding environment, since they might lead to false positives.

Figure 6-3. Benjamin’s arti"cial nose (Credit: blog.benjamin-cabe.com)

This type of research was beyond the scope of his project. Fortunately for Benjamin,
he was familiar enough with machine learning that he knew it might be able to help.

Benjamin used his gas sensor to capture a small dataset of samples from several
different types of drinks. He used this data to train a simple machine learning
classification model to identify which gas readings were associated with which drink.
The project was a success! Benjamin’s system was able to discern between different
types of drinks—even to the level of telling one brand of whiskey from another.

The ability of machine learning to extract rules from data allowed Benjamin to build
a successful project without having to invest in chemical analysis of the drinks, which
could have been time consuming and expensive. It also allowed him to avoid writing
the sensitive, hand-tuned logic required to account for other gases present in the
environment, since the dataset—collected in the real world—already factored this in.

It turns out that complex, noisy data is very common. In fact, most real-world
data is a bit of a mess! One of the strengths of machine learning, especially deep
learning models, is that given enough data they can learn to account for noise. During
training, the parameters of the model are tuned in such a way that they filter out the
noise from the data, leaving just the important information—which can be used to
make a decision.

Do I Need Edge AI? | 181

https://oreil.ly/f_7_8

3 The effort to reduce the data requirements of ML algorithms is one of the most important and fascinating
strands of ML research.

In addition, machine learning models are great at identifying the hidden patterns that
exist within their training data. Relationships that would be invisible to the human
eye, or too complex for our handcoded rules to represent, can become quite clear to
machine learning models when they are provided with enough training data.

These advantages make machine learning a great pick if you are confronted with a
bunch of noisy data describing unclear relationships. However, ML’s use of data can
also provide some risk.

The drawbacks of ML
From an engineering perspective, there are three major drawbacks to machine learn‐
ing: data requirements, explainability, and bias.

It’s well known that today’s ML depends heavily on data.3 Large amounts of data are
often required to train and test machine learning systems. Finding adequate data,
and ensuring its quality, is the biggest challenge and expense associated with machine
learning.

Data may seem plentiful—after all, don’t we have “data warehouses” and “data lakes”
filled with decades of IoT sensor data that has been carefully captured and logged?
Unfortunately, raw data isn’t enough. Most of today’s machine learning techniques
require data that has been labeled, meaning it has been tagged with information
describing what it means. This tedious task often falls to humans, which makes it
expensive and risky (since it’s easy to get things wrong).

In addition, machine learning models can only make sense of situations they have
seen before. This makes datasets highly context dependent. A model trained on a
dataset collected using a specific type of sensor may not perform well if fed data
captured by a different brand. A dataset of typical household items from one country
may not be any help when trying to identify items from another.

Research is ongoing to mitigate these issues, and amazing progress is being made,
but the fact remains that machine learning typically requires a lot of data. We’ll learn
more about this topic in the next chapter.

The second big drawback of machine learning, explainability, was mentioned already
in “Interpretability and Explainability” on page 105. While there are some highly
explainable ML models, the more sophisticated a model gets the more challenging it
can be to pinpoint exactly why it is making the predictions it does.

This problem is compounded by the fact that, thanks to their origins in statistics,
many types of ML models don’t give definitive answers. Ask a question of a

182 | Chapter 6: Understanding and Framing Problems

4 There are techniques that will help with this, such as those mentioned in “Anomaly detection” on page 99,
though they may come with a burden of additional complexity.

rule-based system and it will give you a nice, firm response, with clearly visible
workings that you can double-check and review. Ask the same question of deep learn‐
ing model and you’ll get a fuzzy probability distribution that indicates the potential
answer. Trace the answer back through the system and you’ll meet an inscrutable
mess of linear algebra that is beyond the comprehension of a human mind.

Their probabilistic nature means that ML models are great for dealing with fuzzy
situations and nonobvious rules. Unfortunately, this means that their output has
some of the same properties. This can be a challenge for many applications.

For example, the code that powers safety-related devices in fields like medical tech‐
nology, automotive, and aerospace is often expected (through best practices and
government regulation) to be provably correct. It’s very difficult to meet this bar with
a probabilistic model whose internal rules can only be gleaned through probing and
experimentation.

The third big drawback of ML, bias, is a direct result of the first two challenges.
We encountered this issue back in “Black Boxes and Bias” on page 46. When we
create ML models, we rely on our datasets to both train them and to validate their
performance. Our goal is to produce a model that works well in the real world.
However, the real world is a big place, and it’s quite challenging to capture all of its
possible variation in a finite dataset.

If our dataset only includes a subset of all possibilities, our model may fail to perform
correctly on the others. Even worse, because we don’t have any examples of those
other possibilities in our dataset, we’ll have no idea that this is even a problem. Our
model may appear to be working great when in fact it has some major issues.

To compound the issue, our model won’t necessarily even tell us when it is having
trouble.4 Instead, it will just make its best guess—which could be catastrophically
wrong. Without data to test it, and without an easy way to analyze the internal rules
of the model and understand where it might fall short, we’ll have no way of knowing
there is something wrong, beyond our application failing.

A Simple Example of ML Bias
Imagine you’re building a system that uses audio to identify faults in an industrial
machine. Working in your research and development lab, you collect a big dataset
with thousands of audio samples representing correct and faulty operation. When
you train and test the model in the lab, it works great. But when you deploy it to a
customer’s factory, it identifies far more faults than expected.

Do I Need Edge AI? | 183

On investigation, you discover that the model is detecting faults when adjacent
machines are running. Because your dataset only contains data from your quiet lab,
the model never learned to account for the ambient sounds of a factory floor. The
model’s biases reflect the lab conditions under which it was trained. It does not
perform well in the real world.

Since we can never hope to sample the entire world in our dataset, bias is inevitable.
However, we can manage the risk by rigorously understanding our application. In
some situations, however, the consequences of bias may be so high that the applica‐
tion is not well suited to ML at all. The values held by many societies would not
consider it appropriate for ML to be used to make certain life-or-death decisions,
such as those resulting from the use of autonomous weapons systems. Similarly, there
is much debate about the use of machine learning in automating judicial decisions,
including sentencing.

Knowing when to use ML
There’s a common saying about solving problems: “If all you have is a hammer,
everything looks like a nail.” Machine learning is far more exciting than the shiniest
of hammers, and it’s tempting to try to use it everywhere. Sadly, its complexity,
limitations, and inherent risks make it a poor choice in many situations. Mat Kelcey,
principal ML engineer at Edge Impulse, is fond of saying “the best ML is no ML at
all.”

There’s no shame in using traditional algorithms to solve problems. As we saw in
“Artificial Intelligence” on page 6, the intelligence part of AI comes from “knowing
the right thing to do at the right time.” It doesn’t matter to your users whether this
knowledge is embedded in the form of an if statement or in the form of a deep
learning model.

With that in mind, here’s a checklist you can use to help decide whether ML might be
appropriate for your application:

• There is no existing rule-based solution, and you don’t have the resources to•
discover one.

• You have access to a high quality dataset or collecting one is within your budget.•
• Your system can be designed to make use of fuzzy, probabilistic predictions.•
• You do not need to explain the exact logic behind your system’s decisions.•
• Your system will not be exposed to inputs beyond those reflected in its training•

data.
• Your application can tolerate a degree of uncertainty.•

184 | Chapter 6: Understanding and Framing Problems

5 As documented in “Human–Machine Partnership with Artificial Intelligence for Chest Radiograph Diagno‐
sis”, by Bhavik N. Patel et al. (National Library of Medicine, 2019).

Machine learning models are never perfect. The reason we use them is that compared
to human intelligence, they are cheap and they scale well. One big trade-off is that
they can fail in unintuitive ways. The decision of whether to use ML is a question of
both “Is it good enough?” and “Can we handle the types of errors it is likely to make?”

Automation Versus Augmentation
There’s often an assumption that machine learning should be used to automate tasks:
taking something that a person would have done and doing it automatically on the
cheap. However, a slightly different approach to a problem can mitigate some of the
risks associated with the strange ways that ML models can fail.

Rather than replacing a human role, it can be much more powerful to augment a
person’s ability to do their job. Instead of putting a model in charge, the model’s
output is provided as guidance for a person—who is able to combine it with their
own insight, expertise, and common sense in order to decide how to act.

A combination of human and machine intelligence has been proven to work better
than either technique alone in settings as complex as medicine.5 While there are some
risks, including automation bias, where people over-rely on automated systems and
ignore their own intuition, augmentation can be an effective way to derive value from
an imperfect system.

Practical Exercise
Here are three scenarios that might potentially call for the use of edge AI. For each
one, come up with a problem description and then decide whether it might make
sense to apply edge compute, machine learning, or both. You may have to do some
online research to fully understand each scenario:

Scenario 1: Fertilizer application
An agricultural producer wishes to save money and reduce environmental
impact by applying less fertilizer to their crops. Rather than spraying a field
uniformly with fertilizer, they would like to identify the areas within a field that
would benefit the most from fertilizer (for example, due to variations in soil
quality), and apply it there exclusively. They can understand whether fertilizer is
needed by visually inspecting the growing plants.

Scenario 2: Hotel servicing
Hotels traditionally clean guest rooms during the daytime when guests are likely
to be out. However, if a guest is still present in their room they may not want to

Do I Need Edge AI? | 185

https://oreil.ly/147IG
https://oreil.ly/147IG
https://oreil.ly/QHD74

be disturbed. A hotel chain would like to know whether any guest is present in
a given room, so that their cleaning staff do not have to knock on the door and
potentially disturb them.

Scenario 3: Tire life
Car tires wear out over time, and certain types of wear can indicate mechanical
problems. This wear is usually spotted during periodic maintenance. A vehicle
manufacturer would like their cars to identify some types of tire wear automati‐
cally, so that they can catch problems earlier.

There’s no right or wrong answer for any of these prompts; they simply provide an
opportunity to apply the analysis techniques we’ve learned so far.

Determining Feasibility
So, you have an idea for an edge AI project? Your first goal should be to determine its
feasibility. There are many things to consider. Perhaps your project would be better
served using server-side AI—or maybe your solution requires machine learning, but
it’s not feasible to collect a dataset. Alternatively, maybe it’s the perfect fit!

The first step is to try and come up with an ideal solution to the problem in your
problem description. If you try to forget about technological limitations and think at
an extremely high level, what would you want the system to do?

Preconceived Notions

The purpose of our ideal solution is to give us something to aim
for. If we constrain our search for ideas by what we think is feasi‐
ble, we may miss promising solutions that are not immediately
obvious. By keeping things ideal, we make sure we don’t limit our
own creativity.
The ideal solution also helps us avoid the temptation to use a cer‐
tain technology because we are excited about it. It’s a very common
trap: we’ve just learned about some fascinating new technique and
have been looking for an excuse to try it—so we overlook another
method that would have given better results.

Once we have an ideal solution, we can consider feasibility from a few angles:

• Moral: Should it be done?•
• Business: Is there value in doing it?•
• Dataset: Do we have the raw materials?•
• Technology: Can it be done?•

186 | Chapter 6: Understanding and Framing Problems

For a project to be feasible overall, it needs to sit in the sweet spot of all four. Let’s
explore each of these angles one by one, using an example application to illustrate. In
the real world, we would base our ideal solution on a detailed problem description.
To keep things lightweight, we’ll go with this simplified statement.

Edge AI for Warehouse Security
A warehouse filled with valuable products could be an attractive prospect to thieves.
The first step in keeping the warehouse safe is to monitor it 24 hours per day.

Our ideal solution would be a system that is aware of every human being on the
premises, understands contextually which of those people are supposed to be present,
and informs a centralized authority of the location of any others.

There’s no requirement that our solution is based on AI, or even uses technology.
Depending on the context, the best system might be a team of human security guards.
In the process of our feasibility investigation, we’ll begin to determine the appropriate
mix of human and technological abilities that will solve our problem in an elegant
way.

Moral Feasibility
Ethical review is one of the most important parts of any feasibility analysis. A project
that fails due to unaccounted technology risk may cost a lot of wasted money, but
damage resulting from ethical issues is potentially unbounded—it can easily cost a
company its reputation, trigger punitive regulatory measures, and cause direct harm
to human beings.

“Building Applications Responsibly” on page 41 introduced some of the ethical issues
that can affect AI products. As part of a feasibility analysis, it’s critical to rigorously
explore and document any potential ethical issues that could result from your appli‐
cation. Beyond the product itself, it’s important to also understand any potential risks
that come from the development process: data collection, deployment, and support.

This process needs to involve participation from the length and breadth of your
team—driven by your ethical and domain experts. The material in “Diversity” on
page 126 outlines the importance of maximizing the number of perspectives you are
able to draw from.

Some key questions to ask include:

• To whom can the solution cause harm? Example: Some products (such as AI•
weapons) are designed to directly cause harm, while others may cause harm indi‐
rectly or due to negligent engagement with human stakeholders.

Determining Feasibility | 187

• Can the required data be obtained without violating the rights of individuals•
or communities? Example: Some datasets may not be feasible to collect without
violating user privacy.

• Is it possible to test the product without harming or violating the rights of•
stakeholders? Example: An application that provides medical advice may cause
harm during testing if the advice given is not reliable.

• Have the potential risks been documented? How can they be mitigated? Example:•
What is the potential harm if an application produces incorrect predictions?

• Does the application work for all of its potential users? Example: A safety-related•
speech detection application might be ine$ective with speakers who have regional
accents.

It can be very difficult to understand the potential for indirect harm resulting from a
project. For example, what if jobs are placed at risk as a result of an AI project, or if
there are trade-offs between profit and environmental impact? Having a broad pool
of expert advisors will help you navigate the nuance.

Warehouse Security Application Ethical Feasibility Review
A good way to begin an ethical review is to brainstorm a list of potential issues. Here’s
an example brainstorm for our warehouse security application. This is not intended
to be an exhaustive list!

• Is the product itself ethical? The product might cause harm if it labels innocent•
people as suspicious. The product might cause harm if it results in the security
team being reduced in size.

• Can the required data be obtained ethically? Available datasets may include pho‐•
tographs of individuals who did not consent to being included. If data is collected
at the warehouse, employees may not feel comfortable with being included.

• Is it possible to test the product ethically? False alarms could lead to harm if an•
innocent person is labeled as suspicious. The testing process could distract the
security team and lead to security issues.

• Does the application work for all of its potential users? The application may•
classify people as suspicious at different rates depending on their appearance, not
their intent. The application may be difficult to use for security guards who are
unfamiliar with similar technology.

Ethics is all about people and processes. One way to reduce the risk of unforeseen
ethical issues is to make sure the ethical review is conducted by a diverse group of
people from a representative set of demographics, including professionals who have
direct expertise in the ethical evaluation of AI systems.

188 | Chapter 6: Understanding and Framing Problems

In addition to your own team, this group should include representation of stakehold‐
ers potentially affected by the product, as described in “Stakeholders” on page 128.

While the feasibility analysis begins with understanding moral feasibility, your long-
term goal should be to enable a process of continuous ethical review during product
conceptualization, development, deployment, and support. The work you do at this
stage will pay dividends by helping throughout your product lifecycle.

Business Feasibility
There are two main ways that organizational issues can impact the feasibility of a
project. First, for an AI application to be successful it needs to provide some clear
benefit. In a business context, this could be to customers, executives, or the balance
sheet. In a scientific context, it might mean allowing more work to be done with the
same budget. At the outset of any project, it is vital to make sure that the proposed
work will, if successful, add real value.

Second, AI application development is limited by the practical constraints faced by
organizations. For example, there may not be enough budget to collect a dataset of
sufficient size to train an effective ML model. Other common constraints include
time, expertise, and long-term support from stakeholders.

Proving bene"t
One particularly effective way of proving (and demonstrating) the benefits of an edge
AI application is called a Wizard of Oz prototype. In the story of #e Wizard of Oz,
the titular wizard is first introduced as an impressive supernatural being. However, he
is later revealed to be a normal man, hidden behind a curtain, who is controlling the
illusion remotely.

In Wizard of Oz prototyping, a mock version of an AI product is produced. It is
superficially functional, but in reality its functionality is controlled by hidden human
actions. The mock product can be tested and experienced by stakeholders, allowing
people to get a sense for how it might work in the real world, and to compare it
against other options.

Wizard of Oz Testing for Warehouse Security
To test our warehouse security concept, a basic mobile application is developed. A
security guard, equipped with the application, is tasked with his normal patrol. Peri‐
odically, a notification is sent to the guard by a human tester in order to simulate what
would happen if an AI system detected an intruder. The guard reacts by investigating
the issue. He records the amount of time it takes for him to respond.

Subsequent analysis finds that, given the response time, the application is not helpful:
in the large warehouse complex, it takes so long for the guard to reach the site that

Determining Feasibility | 189

any thief would have long departed. The expense of developing the application would
not be worth it, and the money would be better spent hiring additional guards.

Alternatively, it may have been found that the guard was able to attend to each situa‐
tion rapidly, and that an AI application would help improve their ability to protect the
site. The findings help persuade management that the investment is worthwhile.

In either case, the outcome of the Wizard of Oz test helps the organization save
money.

This can be an extremely helpful exercise. Even without the technology portion of the
project, the user experience can be explored, analyzed, and refined. If the experience
is impressive, it can go a long way toward convincing stakeholders that a project is
worthwhile. If things do not work well even in an artificial form, it’s a good signal that
you should go back to the drawing board.

For any evaluation to be successful, it’s important to get stakeholder agreement on
what “good” looks like. In our warehouse example, this might mean setting the
minimum time it takes for a single guard to respond to an intrusion. During the
test, we set up instrumentation that helps us monitor these metrics, deploy a baseline
version of our application (for example, the fake Wizard of Oz application), and then
evaluate it.

During this process, it’s really important to test out the current solution alongside
the proposed ones. This will provide a clear signal as to whether the solutions being
evaluated are genuinely beneficial. This is an important thing to check throughout the
development process, not just at the start.

Since we’ve established a specific threshold for good, it may even turn out that
the current solution is good enough to satisfy the stakeholders, in which case the
organization can save money by not adopting an AI-based solution. But if we prove
that there’s a benefit, the project can proceed with confidence.

Understanding constraints
Of course, beyond Wizard of Oz prototyping, there are many ways that organizations
work to determine the risk, reward, and benefit of new projects. AI projects are no
different and establishing that your idea is a good fit for the needs of the organization
you work within will be critical to ensuring its success.

Part of this is identifying your organizational constraints and making sure they
will not pose any problems. Here are some of the top constraints when developing
AI applications:

190 | Chapter 6: Understanding and Framing Problems

6 Even if you are reproducing a well-known algorithm from a textbook, you’ll still need to run data through it
to make sure your application works end to end.

Expertise
Although AI engineering is increasingly accessible, having experienced AI
experts on hand will help de-risk your project. Make sure the skills you need
are available to you before you begin.

Timeline
AI development is a data-driven, iterative process, and it’s even more challenging
to produce accurate time estimates for than traditional software engineering.
Make sure you have room for contingencies, such as discovering late in the
process that you need to collect more data.

Budget
The three most expensive parts of AI development are payroll, data collection,
and testing in the field. If you are an individual or a small organization, compute
time for training can become significant—although it will typically not exceed
more than a few thousand dollars, since edge AI models tend to be small.

Long-term support
As we’ll see in Chapter 10, AI applications need long-term support to remain
effective. As the world changes around them, ML models and hard-coded rules
will need to be updated and refined. If your project will be deployed for more
than a few months, it’s important to know whether your organization can afford
(and is willing) to support it.

You are the expert in the way your organization works, and it’s up to you to under‐
stand whether it is capable of supporting the project you wish to develop.

Dataset Feasibility
Alongside technical feasibility, edge AI application development is constrained by
data that is available. Machine learning is famously data hungry, but even hand-
coded, rule-based approaches require substantial amounts of data to develop and
test.6

Data collection is difficult, time consuming, and expensive, so it is challenging but
vital to understand the data requirements of your project during the feasibility assess‐
ment stage. There are two steps to understanding data feasibility:

1. Estimating how much data is required to solve your problem1.
2. Understanding whether you will be able to obtain enough of it2.

Determining Feasibility | 191

Both of these topics are covered in detail in Chapter 7. As we’ll see, understanding
data requirements involves both research and engineering work. This means that
you won’t know your actual data requirements until you have invested a significant
amount of time in a project.

At this stage, it’s OK just to have a ballpark idea, perhaps based on some precedents
that you have found via research (as we will discover in Chapter 7). If it doesn’t look
like you will have enough data, your project may not be feasible. It’s critical that you
rule this out at an early stage to avoid wasted development effort.

Dataset Feasibility for Warehouse Security
Our security application revolves around detecting people in a warehouse. To begin
understanding the data requirements, it’s helpful to identify some similar applications
in scientific literature. For example, some web searching around the topic of person
detection might unearth a reference to the Visual Wake Words dataset (Chowdhery et
al., 2019), a dataset of 115,000 images of people in a wide range of contexts.

The literature shows it is possible to get >95% accurate performance on the dataset
with a model that will run on a high-end MCU. This gives us at least some assurance
that our use case might be feasible. In addition, the fact that it is publicly available
means that we could potentially use it to help train our own model.

At this stage, this might be enough to convince us that our project is feasible from
a dataset perspective. There’s always some risk that things may not work out—for
instance, we may discover that detecting people in a dark warehouse is more chal‐
lenging than in the typical contexts that appear in the Visual Wake Words dataset. It’s
up to us to decide the level of risk we are willing to accept, and we can always reduce
the risk through experimentation.

Data issues are one of the leading causes of ML project failure, so if you see negative
signals during this part of your feasibility check, don’t just cross your fingers and
hope for the best.

Technological Feasibility
In Chapters 3 and 4 we took a long walk through the technologies most important to
edge AI. That material will be a great resource as you try to understand the feasibility
of your ideas.

192 | Chapter 6: Understanding and Framing Problems

https://oreil.ly/biJLy
https://oreil.ly/biJLy

The first step is to map your idea onto edge AI concepts and methodologies. Here are
some of the key ones, all of which are featured earlier in the book:

Sensors
How will you collect the data you need?

Data formats
What kinds of signals will your sensors output?

Feature engineering
What are the options available for processing raw signals?

Processors
How much compute can you afford, budgeting by cost and energy usage?

Connectivity
What type of communications are available to you?

Problem types
Do you need to perform classification, regression, or something else?

Rule-based or ML
Is it necessary to use machine learning, or can you get away with a rule-based or
heuristic approach?

Choice of ML algorithm
Will classical ML suffice, or do you need a deep learning model?

Application architectures
Will you need a single edge device, or a more complex arrangement?

Finally, and most importantly, you’ll need to consider the human element. Your
eventual solution will be a system composed of people and technology, working
together. Any technology decisions need to be viewed through a human lens.

At this point, it’s still too early to try to answer all of these questions definitively.
Instead, it makes sense to brainstorm a handful of possible solutions: start with four
or five rough ideas, but feel free to capture more if they come easily to you. They
don’t all have to be fully thought out, but you should try to capture elements of the
above.

An example in our warehouse security context is shown in the following sidebar.

Determining Feasibility | 193

Brainstorming Ideas for Warehouse Security
Even though we’re trying to brainstorm an edge AI system, in most cases it’s helpful
to begin by establishing the simplest possible baseline. This gives us a known quantity
to measure our other solutions against. You should also consider any incumbent
solution that you are attempting to replace.

Solution 1: Security team
The warehouse is staffed by a team of trained trustworthy security guards that is
large enough to maintain 24-hour visibility over its contents.

In some cases, a nontechnological baseline (or a non-AI solution) may turn out
to be the best solution. You should always be open to this eventuality: our job
here is to deliver value, not to find an excuse to use AI.

Similarly, since edge AI comes with significant challenges, it’s also a good idea to
reason about possible cloud-based solutions. Of course, in some cases there may
not be a cloud-based solution—but it’s always worth thinking about.

Solution 2: Cloud AI
The warehouse has numerous hardwired cameras, each streaming video to the
cloud via networked internet access. A cloud server runs deep learning person
detection on every video stream concurrently, messaging a security guard via an
app if a person is detected in an unauthorized location.

We now have a cloud-based system to reason about. Let’s see what happens if we
push some of the compute back down to the edge.

Solution 3: Edge server
The warehouse has numerous hardwired cameras, each streaming video to an
on-site edge server via a network. The edge server runs deep learning person
detection on every video stream concurrently, messaging a security guard via an
app if a person is detected in an unauthorized location.

This sounds interesting! It sounds achievable, and there are certainly some tech‐
nology benefits—for example, we’re no longer reliant on an internet connection.
Now let’s see if we can push even more compute to the edge.

Solution 4: On-device compute
The warehouse has numerous hardwired cameras, each of which is equipped
with a high-end MCU. The MCU runs deep learning person detection on the
camera’s video stream, messaging a security guard via an app if a person is
detected in an unauthorized location.

In addition to edge versus cloud, there are many other axes we can explore for
ideas. For example, how about varying up the sensor type?

194 | Chapter 6: Understanding and Framing Problems

Solution 5: On-device compute with sensor fusion
The warehouse has numerous hardwired devices, each equipped with multiple
sensors, including video, audio, and radar, along with a high-end MCU. The
MCU uses sensor fusion to detect people, messaging a security guard via an app
if a person is detected in an unauthorized location.

We now have five possible solutions to explore. Each one has its own benefits and
drawbacks that can be analyzed, compared, and debated. It’s not always obvious
which solution makes the most sense; the correct answer will vary depending on
everything from business requirements to the skillset of an organization. The key is to
produce a portfolio of ideas so that you can begin to explore the options.

Framing problems
In order to fully explore the technology requirements of any AI solution, we need
to be able to frame our problem in terms of the tools available to us. In “Algorithm
Types by Functionality” on page 96, we met an assortment of useful techniques:

• Classification•
• Regression•
• Object detection and segmentation•
• Anomaly detection•
• Clustering•
• Dimensionality reduction•
• Transformation•

To solve any problem, we first need to break it down into chunks that can be
addressed using these techniques. A given problem may require multiple techniques
to solve. For example, identifying intruders in unauthorized locations might involve
both object detection (for spotting people) and anomaly detection (to identify when a
person is behaving unusually, like sneaking around a warehouse aisle at night).

Each technique may require a different type of algorithm: for example, object detec‐
tion might require a deep learning model and anomaly detection could be done
using classical ML. By breaking down a problem into these techniques, we can better
understand the computational burden of the work that must be done—which will aid
with brainstorming solutions and help inform our hardware choices.

Any given problem can typically be broken down (or framed) in many different
ways, each with its own set of technology requirements. For example, it might also
be possible to spot intruders in a warehouse using dimensionality reduction: we
could use an embedding model to describe any people in view, then compare their

Determining Feasibility | 195

embeddings to a database, allowing us to identify when a nonemployee is in the
warehouse.

This would have different technology, data, business, and ethical considerations than
an object detection-based system. As such, framing gives us another tool to explore
the space of possible solutions and find something that fits our unique requirements.

Device capabilities and solution choice
For every edge AI project, there are innumerable hardware options. For instance, our
warehouse security brainstorm resulted in solutions that could be implemented using
MCUs, with an edge server, or in the cloud. Each individual solution has its own
gigantic space of hardware choices—for example, for an MCU-based project we must
select hardware from a list including dozens of silicon vendors, each with dozens of
chips, all configurable in endless ways.

From a feasibility standpoint, we need to understand which of these hardware
options are reasonable given the constraints of our problem—as described by our
problem description. Constraints might include cost, in-house expertise, existing
brownfield (“Greenfield and Brownfield Projects” on page 26) systems, or supply
chain considerations. Capturing these constraints shrinks both the space of hardware
options and the space of possible solutions.

After applying constraints, we might discover that there is no solution that fits. For
example, in a brownfield project the only available hardware might not have enough
memory to run an object detection model with suitable performance.

Table 3-1 provides a reference you can use to understand whether your application
is in the ballpark of feasibility for the hardware options available to you. Remember,
you can always split your application across multiple device types if you need addi‐
tional flexibility. We’ll cover this in depth in “Architectural Design” on page 278.

Making a Final Decision
At this point, we’ve reviewed the feasibility of our project from the perspective of
ethics, business, dataset, and technology. We should have enough information to
make a call. If none of the solution ideas we have brainstormed seem like a good fit,
our next steps should be as follows:

1. Update the problem description with the new constraints that we have identified1.
during the review process.

2. Perform a new brainstorm of solutions, coming up with a new set of possible2.
solutions that factor in our newly identified constraints.

3. Go through the same feasibility review process with our new solutions.3.

196 | Chapter 6: Understanding and Framing Problems

As with everything in AI, this can be an iterative process. You may have to repeat
these steps several times in order to clarify your understanding of the constraints and
arrive at a solution that works. It’s worth having patience and being willing to revisit
your assumptions. You will likely end up with a potential solution, even if it isn’t what
you envisioned at the start.

That said, in some cases there may simply not be a good edge AI solution for the
problem you are trying to solve. If that happens, take note of the reasons. Perhaps
they are ethical, and a sign that the project is too ethically risky to consider. Alterna‐
tively, they may be purely technological—which could mean the project may become
feasible at some point down the line, as new hardware and techniques become
available.

In any case, even if you have not been able to identify a promising solution, the
process of exploring the solution space from a feasibility standpoint will have been
incredibly instructive. You now likely know more about this problem space, from an
AI perspective, than anybody out there.

If a solution does not pass the feasibility test, resist the temptation to continue
anyway. If you’ve proven that it is too risky, trying to develop the project will result in
wasted time and potential harm.

Even the knowledge that there is no reasonable edge AI solution
to a problem is valuable information; the fact that you are aware
of it is a form of competitive advantage. You may see other organi‐
zations wasting time pursuing it—but you will have the confidence
to know that their efforts will fail and you will get better results
focusing elsewhere.

If you have reached this point and your project seems feasible, congratulations—it’s
time to start making it a reality.

Planning an Edge AI Project
Edge AI development is a multistage process involving iterative development and
potentially unbounded tasks (such as data collection, which as a process is never truly
finished). With this in mind, it’s important to come up with a plan before developing
a solution.

In “The Edge AI Workflow” on page 169 we saw the various workflow stages and
how they are connected by a multitude of feedback loops. As an iterative process, you
can spend as long as you like on each section. The two most important aspects of
planning are:

Determining Feasibility | 197

• Defining acceptable performance•
• Understanding time and resource constraints•

De"ning acceptable performance
The very first stage of your planning process should be to come up with a set of
concrete standards for what acceptable performance will look like for your system.
This must be done in conjunction with stakeholders and ethical analysis since an
underperforming system may create risks in these areas.

Your task during development will be to step through the iterative process until
you have met your goals with regards to acceptable performance. Once they have
been satisfied, your stakeholders can confidently sign off on the project knowing that
it is working well enough. Your goals should be set realistically—they need to be
achievable—but they should also be set in such a way that the project will genuinely
deliver value if they are met.

We’ll learn about some key performance metrics in “Useful Metrics” on page 322.

Understanding time and resource constraints
It’s very important to understand both how much time you have and the resources
you have available to help deliver a project—including funds, expertise, and hard‐
ware. Estimating development time is famously hard, and this is especially true with
AI projects.

Due to the iterative nature of AI development, a traditional waterfall-style develop‐
ment model will not work well. Instead, you’ll need to understand and manage risk as
you move forward. A good approach is to aim to have something working end to end
as rapidly as possible.

You can then iterate on the entire system as well as its individual components. Your
very first version may be a Wizard of Oz prototype that uses off-the-shelf hardware
and simple logic. You might iterate on this, training a simple ML model to replace the
Wizard of Oz component and then creating a custom hardware design.

At every point during the process, your entire system should be tested end to end to
determine whether it meets the performance standards you have defined. One benefit
of this is that it removes the risk that you will spend all of your time on one stage
of the project—for example, training a model—and not leave enough time for the
remainder. Another benefit is that, sometimes, you may find that a simpler system
than you originally envisioned is more than adequate to meet your performance
goals.

We’ll dig deeper into the topic of planning when we reach Chapter 9.

198 | Chapter 6: Understanding and Framing Problems

Hardware Is Hard
Hardware projects come with unique challenges, and it’s often important to begin
the process of hardware design early in the process, concurrently with any software
work. Once you have identified a suitable processor, obtain a development board
so that you can begin working directly with hardware as soon as possible. This will
help reduce the risk of unexpected friction when you try to deploy your logic to the
hardware.

Due to the realities of the hardware supply chain, you may find that you need to pull
the trigger on hardware orders before you feel entirely confident in your application’s
requirements. This is a major source of risk, but it may be an unavoidable one. It’s
best managed by getting your application deployed onto some development hardware
as quickly as possible. Most silicon manufacturers provide plenty of development
boards for this exact purpose.

If you are particularly worried, it may be helpful to select hardware with some excess
capacity, giving you some headroom if you underestimate the requirements of your
application code. Once you’ve gone to market and proven your algorithm works, you
can potentially design a second version that is more cost effective. Some processor
lines are even “pad compatible,” meaning you can start with a more capable processor
but easily switch it out for a cheaper version without any changes to your circuit
board.

Summary
We now understand the general workflow that applies to edge AI projects, and we’ve
learned how to evaluate problems and generate promising solutions.

In the next chapter, we’ll move forward with the first part of the edge AI workflow—
collecting an effective dataset.

Summary | 199

CHAPTER 7

How to Build a Dataset

The dataset is the foundation of any edge AI project. With a great dataset, every
task in the workflow becomes both easier and less risky—from selecting the right
algorithm to understanding your hardware requirements and evaluating real-world
performance.

Datasets are indisputably critical for machine learning projects, where data is used
directly for training models. However, data is vital even if your edge AI application
doesn’t require machine learning. Datasets are necessary in order to select effective
signal processing techniques, design heuristic algorithms, and test applications under
realistic conditions.

Collecting a dataset is typically the most difficult, time-consuming, and expensive
part of any edge AI project. It’s also the most likely place you will make terrible, hard-
to-detect mistakes that can doom your project to failure. This chapter is designed to
introduce today’s best practices for building an edge AI dataset. It’s probably the most
important section of this book.

What Does a Dataset Look Like?
Every dataset is made up of a bunch of individual items, known as records, each of
which contains one or more pieces of information, known as features. Each feature
may be a completely different data type: numbers, time series, images, and text are all
common. This structure is shown in Figure 7-1.

201

1 Bear in mind that samples at the dataset level are not the same thing as samples in an arbitrary digital
signal. One dataset-level sample (aka record) might contain a feature that consists of multiple samples. As a
multidisciplinary field, edge AI has a ton of these confusing terminology collisions!

Figure 7-1. A dataset contains many records, each of which may contain many features;
features can have di$erent data types.

There are many different names for these components of datasets. Records are com‐
monly referred to as rows, samples, items, examples, or instances. Features are also
known as columns or "elds.1

Many datasets also contain labels, which are a special kind of feature that indicates the
desired output of a model trained on that dataset—for example, the class returned by
a classifier, or the bounding boxes returned by an object-detection model.

It is common for datasets to include something called metadata. This is special
data that describes the data itself. For example, a record may include metadata that
indicates the exact model of sensor its features were collected with, the precise date
and time it was captured, or the sampling rate of the signal that makes up one of its
features.

Datasets can be stored in many different ways: on a filesystem, in
a database, in the cloud, or even in filing cabinets and cardboard
boxes.

The structure of a dataset often evolves substantially during development. This may
include changes in what its records and features represent. For example, imagine you
are building a dataset of vibration data from industrial machines, since you wish to
train a classifier to distinguish between different operational states.

202 | Chapter 7: How to Build a Dataset

2 According to Statista Global Consumer Survey, 2022.

You may begin by capturing 24 hours of data from 10 different machines. In this
case, each record represents a specific period of time from a particular machine. You
might then divide these records up, splitting each 24-hour record into sections that
correspond to different operational states, and then adding the appropriate labels.
Next, you might perform feature engineering on each record, creating additional
features that can be fed into a machine learning model.

The Ideal Dataset
An ideal dataset has the following properties:

Relevant
Your dataset should contain information that is useful for the problem you are
trying to solve. For example, if you’re building a system that uses heart rate
sensor data to estimate athletic performance, you’ll need a dataset that includes
both heart rate sensor data and some measure of performance. If you’re planning
on using a particular type of sensor, it’s typically important that your dataset was
collected using a similar device. If you’re trying to solve a classification problem,
it’s important that your dataset contains discriminative information about the
classes you care about.

Representative
To be representative, a dataset must include information about all of the differ‐
ent, varied types of conditions that might be encountered in the real world. For
example, a dataset to be used in a health monitoring application would need to
include data from a wide enough range of individuals to cover all of the different
types of people who might be using the application. Unrepresentative datasets
will result in bias, as described in “Black Boxes and Bias” on page 46.

Balanced
Beyond being merely representative, ideal datasets contain a good balance of
information from all of the relevant types of conditions. Many types of machine
learning algorithms work best with balanced datasets, including deep learning
models.

For example, in the US, 76% of commuters use a car to get to work, while only
10% of commuters use a bicycle.2 If we were training a model to count vehicles
driving across town, it would be important to use equal amounts of data for
cars and bicycles—even though bikes would represent a minority of encounters.
Otherwise, the model may perform better at identifying cars than bikes. This is
another common way for bias to enter your system.

The Ideal Dataset | 203

https://oreil.ly/7qzc8

3 See “The Uneven Distribution of Errors” on page 234.

Reliable
An ideal dataset is consistently accurate. It contains as few errors as possible,
and if there are errors, they exist uniformly across the data—as opposed to
being concentrated in certain categories.3 If there’s noise in your data (which is
common for sensor applications), it should be the same type and magnitude of
noise that is present under real-world conditions. For example, we might want to
train a classification model to identify different genres of music, using a dataset
of music samples. In our dataset, it’s important that each sample is labeled with
the correct genre, and that the samples include a similar amount of background
noise as the expected real-world conditions.

Well formatted
The same data can be formatted in numerous different ways. For example,
images can be represented in an infinite variety of different formats, resolutions,
and color depths. In an ideal dataset, the data is formatted in the way that best
suits the tasks you are using it for. At the very least, it’s helpful for a dataset to
have consistent formatting throughout its samples.

Well documented
It’s critically important to understand where a dataset came from, how it was
collected, and what all of its fields mean. Without this information, you will
not be able to determine if the dataset meets your requirements. For example,
imagine you wish to use a dataset of sensor data sourced from the internet.
Without good documentation, you will have no way of knowing whether the data
is relevant: it may come from sensors that are not equivalent to the ones you
intend to use.

Appropriately sized
A machine learning model can learn the hidden rules in almost any system—as
long as it is provided with sufficient data. For example, you may wish to train
a model to identify different types of tennis shots using accelerometer data. If
the dataset only includes a few samples of each shot, the model may struggle
to learn a general representation of what characterizes each one. To generalize,
more samples for each shot type may be necessary—the more the better.

However, larger datasets result in longer training times, and they are more diffi‐
cult to work with from a technical perspective. In addition, different problems
require different amounts of data to solve, so for every project there is a point
of diminishing returns for collecting further data. Your goal should be to collect
enough data to solve your problem.

204 | Chapter 7: How to Build a Dataset

4 Chapter 9 will talk more about the composition of the teams required to build edge AI products.

If you are mostly using your dataset for testing (versus training a model), you can
get away with a smaller one—but it’s important that your dataset is big enough to
be representative and balanced.

As you might expect, it’s tricky to create a dataset with all of these ideal properties. As
you build your dataset, you will likely have to do some work to get it into shape.

Datasets for Evaluation

While building and testing an edge AI system in the lab requires
one type of dataset, evaluating its performance under real-world
conditions may require another. Chapter 10 will introduce several
ways to evaluate edge AI systems and will explain how to collect
the right types of data for the task.

Every AI project involves the distillation of domain expertise from a human mind
into a computer system. The process of building a dataset is where the majority of
this work happens. It must be conducted with care, intent, and careful consideration.
The good news is that if you get it right, you’ll massively increase your chances of
success.

Datasets and Domain Expertise
Domain experts, also known as subject matter experts (SMEs), are the people with
deep knowledge about the problem you are trying to tackle. No matter what the
niche, there are people who have studied, experienced, and learned the subject inside
out.

It’s important to view domain expertise in your problem area as potentially distinct
from the knowledge required to work with AI algorithms, signal processing, embed‐
ded engineering, or hardware design. While it’s possible for a domain expert to
also have skills in these areas, the fact that somebody is, say, a machine learning
expert does not automatically make them qualified to design AI systems to solve any
problem under the sun.

For example, imagine you are building an edge AI product for the healthcare market.
In addition to hardware and software engineers, and people versed in building AI
applications,4 your team will need to include domain experts who have a genuine
understanding of the healthcare problem you are trying to solve. Otherwise, you’ll
risk building a product that does not work in the way you expect it to.

Datasets and Domain Expertise | 205

Datasets and domain experts are intimately connected. Every AI product reflects the
dataset used to develop, train, and test it. When products use machine learning, the
algorithms are dictated directly by the data. But even handcoded algorithms are only
as good as the data that is used to test them.

This means that the outcomes of your entire project are dictated by the quality of
your dataset. Moreover, the only people in your organization who are qualified to
understand that quality are your domain experts. Their knowledge of the problem
you are trying to solve must guide the construction and curation of your dataset. No
matter how many talented data science experts you have on your team, their skills
will be redundant without proper insight into the problem at hand.

In essence, your dataset acts as the main vector for domain expertise both within
your product and your organization. Since it is constructed using knowledge from
domain experts, it ends up being a representation of their knowledge in digital
form—almost like an application programming interface (API) that provides access
to their captured insights.

This encoded knowledge will be used by the rest of your team to help build your
application. For example, the engineers working on your algorithms will use the
dataset to tune or train them, and those responsible for testing your application will
use it to ensure that it works well in all the situations you need it to.

All of this makes it critical that you have sufficient domain expertise on hand. In
addition, since your domain experts may not necessarily be experts in building and
assessing datasets, you will need them to work closely with the members of your team
who have data science skills. It will take collaboration to build an effective dataset.

But what if you don’t have access to domain expertise? The answer is frank and
perhaps unwelcome. If your team lacks domain expertise in your problem area, it
would be irresponsible for you to attempt to build a product. You will lack not
only the knowledge to build an effective product but also the insight to understand
whether you have built an ine$ective one.

Data, Ethics, and Responsible AI
The quality of your dataset will shape your application’s social consequences more
than any other factor. No matter how carefully you have worked to investigate the
ethical issues around your project, and to design an application that delivers benefit
while being safe, the limitations of your dataset dictate your ability to understand and
avoid unintentional harm.

206 | Chapter 7: How to Build a Dataset

From the perspective of responsible AI, your dataset provides two core things:

• The raw construction material for the system of algorithms that you are attempt‐•
ing to create

• Your most powerful tool for understanding the performance of your system•

Your dataset is your only detailed representation of the real-world situation that your
system is designed to interact with. Your entire application development feedback
loop is mediated by it. As raw construction material, if your dataset is in any
way lacking it will invariably and unavoidably lead to bad performance of your
system. Even worse, the same failings will impact your ability to understand—or even
notice—that the system is underperforming.

This is especially true for edge AI projects, since the nature of their edge deployment
means that it is often challenging to capture information about how they are per‐
forming in the field. Your dataset often represents your only chance at evaluating
your model’s performance with any real precision.

With this in mind, it’s beyond critical that you spend enough time on getting this
part right.

Insu$cient Data Causes a Tragic Death
In “Building Applications Responsibly” on page 41, we learned about a failure in
Uber’s self-driving car system that resulted in the death of a pedestrian. While the
failure was systemic and involved the poor design of procedures and safety systems,
the core issue was a lack of adequate training data.

The following quote, from a Wired article on the incident, provides some illustration:

The report says that the Uber vehicle, a modified Volvo XC90 SUV, had been in
autonomous mode for 19 minutes and was driving at about 40 mph when it hit
49-year-old Elaine Herzberg as she was walking her bike across the street. The car’s
radar and lidar sensors detected Herzberg about six seconds before the crash—first
identifying her as an unknown object, then as a vehicle, and then as a bicycle, each
time adjusting its expectations for her path of travel…
Herzberg, walking a bike loaded with plastic bags and moving perpendicular to the
car, outside the crosswalk and in a poorly lit spot, challenged Uber’s system. “This
points out that (a) classification is not always accurate, which all of us need to be
aware of,” says Rajkumar, “and (b) Uber’s testing likely did not have any, or at least
not many, images of pedestrians with this profile.”

—Aarian Marshall and Alex Davies, Wired

Human beings are good at something called “zero-shot learning,” the ability to recog‐
nize and identify objects we have not seen before based on our prior understanding of
the world. At present, it’s very challenging to build AI systems that are capable of this.

Data, Ethics, and Responsible AI | 207

https://oreil.ly/p-zWi

If a human driver had seen Elaine Herzberg as she was crossing the road, they would
have immediately understood that they were seeing a person wheeling a bicycle and
could have applied the brakes immediately.

In some locations it is relatively rare to see a person wheeling a bike loaded with
plastic bags across the street, so it was unlikely that Uber’s self-driving dataset would
include many instances of it. However, as we learned earlier, an ideal dataset is
balanced: even if a situation is rare, the dataset will still contain sufficient instances of
it to be able to train a model—or at least to be able to evaluate the model and show
that it is ineffective in that situation.

Since Uber’s self-driving algorithms weren’t capable of zero-shot learning, they
depended on their dataset in order to learn about situations such as Elaine Herzberg’s
crossing of the road. But since the dataset was imbalanced, it didn’t contain sufficient
examples of that type of situation for the model to be able to learn to recognize it.

This tragedy highlights one of the greatest challenges in dataset construction. The
real world is varied to an almost absurd degree. There are a near infinite variety of
human beings, bicycles, plastic bags, roads, and lighting conditions. It’s impossible for
a dataset to ever capture all of the possible combinations of these things.

Further, there are so many possible combinations of variations that even a domain
expert may be unaware of some of them. For example, even if an expert on
urban traffic was tasked with identifying objects that are critical for inclusion in a
self-driving dataset, they may not have thought of including a bicycle loaded with
plastic bags.

Minimizing Unknowns
As in Donald Rumsfeld’s infamous quote, in dataset creation there are both “known
unknowns” and “unknown unknowns.” The only way to build an effective dataset is
to minimize both of them. There are two main ways to do this.

The first, and most effective, is to limit the scope of the situation your model is
going to interact with. A general-purpose, self-driving system could be considered a
nightmare scenario for dataset construction. Self-driving cars must navigate across
vast distances of messy reality, from city streets to country roads, encountering
almost anything that can possibly be imagined. There’s no possible way you can build
a dataset that is representative of all that variety.

In contrast, consider a self-driving golf cart that is restricted to driving around a
golf course. While it’s still possible that it might encounter a bicycle as it roams
around the fairways, it’s quite unlikely—so it may be easier to build a dataset that is
representative of the typical set of circumstances that exist in normal use. In the case

208 | Chapter 7: How to Build a Dataset

5 Michael Roberts et al., “Common Pitfalls and Recommendations for Using Machine Learning to Detect and
Prognosticate for COVID-19 Using Chest Radiographs and CT Scans,” Nat Mach Intell 3(2021): 199–217,
https://doi.org/10.1038/s42256-021-00307-0.

of a self-driving car, the principle of limited scope may guide you to limit vehicle
operation to the geographic area that its algorithms were trained on.

The second way to avoid unknowns is to improve your domain expertise. The more
expert knowledge available about a situation, the less “unknown unknowns” there
may be. If Uber had employed a more effective panel of urban transportation experts
to help build and evaluate their dataset, then they might potentially have averted a
tragedy.

On a practical level, we can also derive a firm rule from this insight: we should never
build edge AI applications for real-world usage in areas where we do not have access
to domain expertise. Without domain expertise, the field of “unknown unknowns” is
unbounded in size. It’s almost guaranteed that we will run into them.

Ensuring Domain Expertise
The amazing tools that now exist to assist with training machine learning models
have massively lowered the barriers to entry. Unfortunately, this creates the tempta‐
tion for developers to build applications in areas where they lack domain expertise.

During the COVID-19 pandemic, thousands of well-meaning researchers and engi‐
neers created projects designed to diagnose infection using medical imagery. A 2021
review published in Nature Machine Intelligence5 identified 2,212 such studies. Of
these, only 62 passed a quality review, and not a single model was recommended for
potential clinical use. The majority of issues found could likely have been resolved
had clinical and machine learning domain expertise been applied.

The peer review system of academia provides a mechanism to analyze and critique
attempts to solve problems with AI. However, in industry there is no such system.
Models are deployed inside black box systems, with no accompanying documenta‐
tion, and are allowed to interact with real-world systems in an unmediated and
unmonitored way. This massively increases the chance that a catastrophic issue may
make it into production.

Those of us who work in edge AI have a profound responsibility to build systems
for ensuring adequate quality, both internally within organizations and through
cross-organizational collaboration. A focus on dataset quality, and the corresponding
deployment of domain knowledge, must be at the heart of any serious effort.

Data, Ethics, and Responsible AI | 209

https://doi.org/10.1038/s42256-021-00307-0

Data-Centric Machine Learning
Traditionally, machine learning practitioners have focused on selecting the best com‐
bination of feature engineering and learning algorithm to get good performance
on a particular task. In this framework, datasets are considered fixed elements that
are rarely manipulated beyond some basic cleanup. They provide an input, and a
reference for correctness, but they are not considered something to be tuned and
tweaked.

In recent years, it has been increasingly recognized that datasets should not be
thought of as static objects. The makeup of a dataset has a strong impact on the
performance of models that are trained on it, and practitioners have begun to modify
datasets in order to achieve better performance on tasks.

This new way of thinking is referred to as “data-centric machine learning.” In a data-
centric workflow, more emphasis is placed on improving the quality of datasets—as
opposed to tweaking the parameters of algorithms.

Data-centric ML follows the age-old computing principle of “garbage in, garbage
out”—the idea that it is unreasonable to expect a computer program to make good
decisions if it is provided with poor-quality input.

Data-centric workflows and tools help developers understand the quality of their data
and how to remedy issues within it. This could involve:

• Fixing or removing mislabeled samples•
• Removing outliers•
• Adding specific data to improve representation•
• Resampling data to improve balance•
• Adding and removing data to account for drift•

It’s important to acknowledge that all of these tasks require domain knowledge. In
some respects, the shift toward data-centric ML is a recognition of the importance
of domain knowledge in getting satisfactory performance from machine learning
systems.

Drift is the idea that the real world changes over time. Datasets and
models must be continually updated to account for it. We’ll cover
drift in detail later in this chapter.

The data-centric approach considers datasets to be living entities that require regular
maintenance. This maintenance is worthwhile because it both reduces the amount of

210 | Chapter 7: How to Build a Dataset

https://oreil.ly/NJ8I2
https://oreil.ly/NJ8I2

algorithm work that needs to be done to train an effective model and reduces the
amount of data that is required. A high-quality dataset with fewer samples is often
superior to a low-quality dataset that has more.

Successful real-world projects often combine a data-centric approach with modern
tools that automate the discovery of effective algorithmic parameters (such as
AutoML systems, which we learned about in “Automated machine learning
(AutoML)” on page 150). Presented with high-quality data, these tools can do an
excellent job of exploring the design space and coming up with effective models.

This is the approach recommended by this book. It empowers domain experts to
focus on the data that reflects their areas of expertise, while handing the grunt
work of algorithm tuning to an automated system. These automated systems rely on
high-quality data in order to evaluate models and select the best one for a task. By
focusing on dataset quality, developers simultaneously improve both the raw inputs
to the system and the mechanism for evaluating it.

Estimating Data Requirements
The most common question that people ask during the initial stages of an edge AI
project is “How much data do I need?” Unfortunately, this isn’t a simple question to
answer. Data requirements vary massively from project to project.

Typically, the data requirements of machine learning projects are much higher than
those that rely only on signal processing, heuristics, and other handcoded algorithms.
In these cases, you will primarily use data for testing—so while you will still need
enough to guarantee that your dataset is representative, you won’t need the vast
numbers of examples of each type of condition that is required by many machine
learning algorithms.

The best way to know the data requirements for a problem is to look for precedents.
Are there examples of this type of problem being solved that give you a sense of how
much data is required?

The web is your best friend in this regard. A quick search will turn up scientific
papers, benchmarks, open source projects, and technical blog posts that can provide
a ton of insight. For example, the website Papers with Code has a “State-of-the-Art”
section that lists benchmark datasets for various tasks and the performance that has
been attained on them over time.

If we were developing a keyword-spotting application, we could take a look at the
results for the Google Speech Commands dataset, which at the time of writing has
been solved with 98.37% accuracy. Digging into the dataset itself tells us that the task
involves classifying among 10 keywords, and that the dataset has 1.5–4k utterances

Estimating Data Requirements | 211

https://oreil.ly/P8opj
https://oreil.ly/OuLiV
https://oreil.ly/gLy_i

for each keyword. If our task is sufficiently similar, these numbers give us a ballpark
figure for how much data we might need.

Another good idea is to explore tools in your problem domain that are specifically
designed to work with minimal data. Deep learning models can be especially data
hungry: are there classical ML alternatives that could fit your use case? If your
problem requires deep learning, are there any pretrained feature extractors available
that might fit your use case, via transfer learning, or could you train one using an
existing dataset?

For example, in the keyword-spotting domain, a paper from researchers at Harvard,
“Few-Shot Keyword Spotting in Any Language” (Mazumder et al., 2021), provides
evidence that a keyword-spotting model can be trained with only five examples of a
keyword, along with a substantially larger dataset to verify its performance.

Table 7-1 provides a relative indication of how much data is required to train
machine learning models for some common tasks.

Table 7-1. Data requirements for common tasks
Task Relative data

requirements
Notes

Time series classi#cation Low DSP can do a lot of the hard work, making this task easier to train.
Time series regression Medium This is more challenging than classi#cation due to #ner-grained labels.
Nonvoice audio classi#cation Medium Varied data is required to account for the diversity of background noise

and environmental acoustics.
Voice audio classi#cation Low or High This typically demanded many hours of data, but new few-shot

techniques reduce this.
Image classi#cation in
visible spectrum

Low Transfer learning using models trained on public datasets makes this a
relatively simple task.

Object detection in visible
spectrum

Medium Transfer learning is available, but this is more challenging than
classi#cation.

Vision models for nonvisible
spectrum

High Transfer learning is not typically available, increasing data
requirements.

It’s important to remember that even these relative requirements are highly approxi‐
mate—they may vary greatly from project to project, which is why it’s difficult to
give exact amounts. Data requirements will continue to evolve as new tooling and
technology becomes available. The more common a task, the more likely there are
signal processing or learning techniques that can help reduce data requirements.

The largest datasets in machine learning are the massive text datasets used for train‐
ing language models from scratch. This is typically not a required task in edge AI,
which limits the upper bounds of datasets that we’re required to deal with.

212 | Chapter 7: How to Build a Dataset

https://oreil.ly/3conT

6 This term is explained in “How is data split?” on page 258.

A Practical Work#ow for Estimating Data Requirements
After our initial research, the next step is to dig out the tools and start doing some
experimentation. Our core task here is to understand whether, given sufficient data,
the feature engineering and machine learning pipeline we have selected will be able to
achieve good enough results.

This task naturally ends up as part of the iterative approach to application develop‐
ment, which we’ll be covering in more detail in Chapter 9. For now, we’ll go over the
relevant tasks at a high level.

Defining what “good enough results” means for our project is an
important step that will be explored in “Scoping a Solution” on
page 271.

Here is the basic process for estimating data requirements:

1. Capture and refine a small dataset. To be effective in estimating data require‐1.
ments, this dataset should meet all the requirements of the ideal dataset described
earlier in the chapter, aside from being appropriately sized. The rest of this
chapter will help you understand the processes required to get it into good shape.

2. Based on your research into potential model types, select a candidate model. It’s a2.
good idea to begin with the simplest model that seems reasonable, since simpler
models are typically easiest to train. Don’t fall into the trap of wanting to try a hot
new technology without having ruled out the simple and elegant alternatives.

3. Divide your dataset into multiple, same-sized chunks. Each chunk should have3.
close to the same balance and distribution as the original dataset. To achieve
this, you should use stratified random sampling.6 Begin with approximately eight
chunks.

4. Train a simple model on one chunk of the dataset and record the resulting4.
performance metrics. It may be helpful to use a hyperparameter optimization
tool, as described in “Automated machine learning (AutoML)” on page 150, to
rule out the effects of hyperparameter selection.

5. Add another chunk to your training data, so it’s now made up of two chunks5.
worth of data. Train the same model again, from scratch (continuing to
use hyperparameter optimization if you decided to use it) and record the
metrics again.

Estimating Data Requirements | 213

6. Continue the process, adding a chunk of data, training the model, and collecting6.
the performance metrics, until you are using the entire dataset.

7. Plot the performance metrics on a chart. It will look something like one of the7.
charts in Figure 7-2.

Figure 7-2. Each chart shows how a performance metric (in this case, accuracy) changes
with the number of records. #e chart on the le! shows a situation where adding more
data would likely result in better performance. #e chart on the right shows a plateau:
adding more data of the same type would be unlikely to result in much performance
improvement.

In both charts, we can see that the model’s performance increases every time we add
more data. By looking at the shape of the curve, we can understand the impact that
new samples are having. In the lefthand chart, the curve indicates that performance
would likely continue to increase if we were to add more data. The trend line pro‐
vides a way to approximately estimate how much data would be required to achieve a
given performance.

In the righthand chart we can see that the model has already reached a performance
plateau. Adding more of the same type of data is unlikely to have any effect. In this
case, it may be worth testing a different machine learning model or algorithm, or
trying to improve on our feature engineering. You might also consider improving
your dataset in ways beyond just increasing its size: perhaps it contains a lot of noise
that could be reduced.

Of course, this technique depends entirely on the assumption that our dataset is
“ideal.” In reality, there are likely to be issues with your dataset—and limitations
of your feature engineering and machine learning algorithm—that prevent the real-
world performance from matching the trend line as data is added. However, it’s still
useful to obtain a ballpark figure—it can help you plan for the effort of collecting
more data.

This technique will not tell you whether your dataset is representative, balanced, or
reliable. These parts are entirely up to you.

214 | Chapter 7: How to Build a Dataset

7 Additionally, you may find yourself combining data from two or more of these sources.

Getting Your Hands on Data
A large part of the challenge of constructing a high-quality dataset is sourcing the
data itself. These are some of the typical ways that data can be obtained:7

1. Collecting an entirely new dataset from scratch1.
2. Outsourcing the collection of data to another team or a third party2.
3. Using data from a public dataset3.
4. Repurposing existing data from a partner or collaborator4.
5. Repurposing existing data from an internal data store5.
6. Reusing data from a previous successful AI project6.

As you can see, there are a range of potential options. However, it’s unlikely that all
of them will be available for a given project. For example, if this is your first edge AI
project you may not have any existing data to repurpose.

Each of these sources represents a different compromise between two important
things: risk of quality issues and effort (which translates into cost). Figure 7-3 shows
how each of them compare.

Figure 7-3. Data sources organized by quality risk and e$ort/cost.

The more control of the data collection process you have, the better you can guaran‐
tee quality. By far, the best option is being able to reuse data that you have used
successfully in the past (6). If you’re lucky enough to be able to take this option, you’ll

Getting Your Hands on Data | 215

8 That said, even messy public datasets can be helpful in evaluating algorithms—they can be a good source of
interesting corner cases.

already know the quality of the data, and you won’t have to invest much effort to
reuse it—as long as it remains relevant.

It’s quite common for organizations to have existing stores of data that can be reused
for AI projects (5). In these cases, it’s potentially possible to understand the quality
of the data since it was collected internally. However, it may require a bit of effort
to get it into the form required for your AI project. For example, a manufacturer
may already be collecting machine data using an existing IoT system. In this case, the
data’s provenance and the collection techniques are known, which helps reduce risk.
However, the data may not be in a ready-to-use form and will likely require some
cleanup. Existing data often lacks labels, which are expensive to add.

Often, data may be available from a partner organization or collaborator (4). In this
case, since someone else has collected the data, there’s no way to guarantee quality—
and some cleanup may be required to make it usable.

The same is true for public datasets (3), which are typically used for academic
research. Public datasets have the advantage of being scrutinized by many pairs of
eyes, and may have useful benchmarks available, but they tend to either be cobbled
together from low-quality data sources and contain a lot of errors or be very small.
They may require significant cleanup to be usable, and they may contain biases that
are not documented or obvious.8

It may be possible to outsource data collection to another team in your organization,
or to a third party (2)—there are entire companies that exist to assist with data
collection and labeling. While in theory you have significant control over the data
collection process, this may still involve significant risk, since it’s very difficult to
guarantee that the third party will follow the correct procedures. This is typically a
costly approach.

The approach that has the lowest risk is getting your hands dirty and collecting the
data yourself (1). When the people who are designing the dataset and algorithms
are the same ones who are leading the data collection effort, the risk of miscommuni‐
cation or undetected error is minimized (assuming they have the required domain
knowledge to do the job right). Unfortunately, this is also the most costly approach.

216 | Chapter 7: How to Build a Dataset

Overcoming Data Limitations
It’s often challenging to obtain enough data. If you run into data constraints, a good
way to unblock your progress is to determine whether a slightly simpler approach to
solving your problem might still work.

For example, imagine you’re building a predictive maintenance system for a produc‐
tion line. Your initial goal might be to identify when a specific fault is likely to occur
soon so that you can schedule preemptive repairs.

As you begin development, you might discover that no data is available that shows the
specific fault you care about, and that you don’t have the budget to collect any. Rather
than give up on your project, you could instead modify your goals.

Instead of predicting when a specific fault is likely to occur, you might decide to
create a more general system that identifies when any sort of change has happened.
This system could be trained on nominal data, which may be easier to collect.

This general system might result in more false positives but depending on the situa‐
tion it could potentially still help solve your maintenance issue and solve costs overall.
By simplifying your goals, you’re able to reduce data requirements and make the
project feasible.

The Unique Challenges of Capturing Data at the Edge
The more common the use case, the more likely you are to find an easily accessible
dataset that has been reviewed for quality. This makes life difficult for many edge
applications, since there’s a massive variety of niche use cases and exotic sensors. In
addition, commercial entities don’t tend to share their datasets since they represent
potential competitive advantage.

If you need to collect your own data, there are some specific challenges to navigate:

Connectivity and bandwidth
Edge compute is often used in applications where bandwidth and connectivity
is limited. This means that it can be difficult to collect data in the field. For exam‐
ple, if you are building an AI-powered camera for monitoring the movement
of farm animals, you might wish to collect images of animals from the field.
However, this may not be possible given the remote locations of many farms and
the lack of connectivity.

To get around this issue, you could temporarily install networking hardware
on-site (for example, a satellite connection might be used in remote regions)—or

Getting Your Hands on Data | 217

9 The age-old practice of transmitting data by carrying a storage device from one place to another. See this
Wikipedia article.

rely on sneakernet capabilities.9 This is very expensive, but it may only need to be
done temporarily, at the beginning of a project.

Brown"eld hardware
As we learned in “Greenfield and Brownfield Projects” on page 26, it’s quite
common to deploy edge AI applications on existing hardware. Unfortunately, the
hardware was not always designed with data collection in mind. To succeed at
data collection, brownfield hardware needs sufficient memory to store samples,
sufficient networking capability to upload them, and sufficient energy budget to
permit the process to occur frequently.

To work around this problem, it may make sense to temporarily install new
hardware on-site that is better suited to the challenge of collecting data. Dedica‐
ted industrial data loggers exist for this purpose, and industrial-grade rapid IoT
development platforms like Arduino Pro can be convenient to use.

Green"eld hardware
If an edge AI project involves the creation of new hardware, working hardware
is likely not available until some time has passed. This can be a major challenge
since it’s important to make progress with dataset and algorithm development in
parallel with the hardware development process. It’s tricky to even know what
hardware is required until at least some algorithm development has been done.

In this case, it’s important to try and get some representative data as quickly as
possible. Similar to the brownfield case, it could make sense to use a rapid IoT
development platform to start collecting data before your production hardware is
ready.

Sensor di$erences
Sometimes, the sensor hardware currently available in the field may not be
identical to the hardware you plan to use in a new device. In some cases, even the
placement of a sensor may be different enough to cause problems.

If you suspect sensor differences might be a challenge, you should try as early
as possible to evaluate the sensor data side by side and determine whether it is
different enough to present a problem. If so, you can use the same approach
recommended for working with inadequate brownfield hardware.

Labeling
One of the biggest challenges in working with edge AI data is the availability
of labels. For example, imagine you are collecting accelerometer data from the
ear tag of a farm animal with the goal of classifying how it is spending its time

218 | Chapter 7: How to Build a Dataset

https://oreil.ly/gqK1e
https://oreil.ly/3qfG1
https://www.arduino.cc/pro

10 In Sim2Real projects, synthetic data is used for training, and real-world data is used for testing.

between eating, walking, and sleeping. Even in a situation where it is trivial to
collect the raw sensor data, it may be challenging to correlate this data with the
actual activity of the animal. If you could already identify the animal’s activity
using the data, your project would not be necessary!

To work around this problem, you can try to collect additional data that may
not be available during the normal operation of the device you are designing.
For example, during initial data collection, you may choose to collect both
accelerometer data and video from a camera that shows the animal’s activity, with
timestamps for both. You can then use the video to help you label the data.

Synthetic Data
Depending on your application, it may be possible to add synthetic data to your
dataset. This is data that is created artificially rather than being captured. If it’s
realistic enough, it may help you meet your data requirements.

Here are some types of synthetic data:

• Simulation-based (e.g., time series from virtual sensors in a physics-based simu‐•
lation of a machine)

• Procedural (e.g., algorithmically generated audio designed to simulate environ‐•
mental noise)

• Generated images (e.g., realistic 3D renders, or images output directly from•
sophisticated deep learning models)

Synthetic data is typically helpful as a way to extend a dataset that contains real
data. For example, artificially generated background noise could be mixed with real
captured audio to help train a classifier to distinguish between background noise and
human speech.

The concept of training a model on entirely simulated data, and then applying it
to solve real-world tasks is known as Sim2Real.10 It is considered one of the most
important and challenging tasks in robotics and is an area of ongoing research.

There are various software tools designed to help create synthetic data, or you can
write your own with the help of a domain expert. At the time of writing, tools
for generating artificial data are rapidly improving and available with commercial
support.

Getting Your Hands on Data | 219

Storing and Retrieving Data
As you begin to collect data, you’ll need somewhere to store it. You’ll also need a
mechanism for getting data from devices into your data store, and from your data
store to your training and testing infrastructure.

Storage requirements vary massively depending on how much data you expect your
dataset to contain. The more data you have, the more sophisticated your solution
needs to be. That said, edge AI datasets are typically relatively small and are unlikely
to require technologies designed to operate at massive scale.

When choosing a solution, it’s always preferable to go with the simplest you can get
away with. If you’re dealing with a quantity of data that can fit happily on a single
workstation, there’s no need to invest in fancy technology. The more direct access you
have to your data for easy exploration and experimentation, the better—so from a
convenience perspective, the ideal option is always your local filesystem.

Data Forms
Data tends to live in many different places throughout an organization’s infrastruc‐
ture. Some typical locations (which you may or may not have encountered) include:

• Production SQL databases•
• Time series databases•
• Log files•
• Data lakes•
• Data warehouses•
• Cloud services•
• IoT platforms•

It’s absolutely fine for data to live in different stores along its journey to become a part
of your dataset. For example, you might find it convenient to store raw sensor data in
one place, cleaned sensor data in another, and labels in a totally separate store.

When you’re building a dataset for an AI project, you’ll typically need to pull data
from all of these disparate locations into a single place. You’ll also need to reformat
the data so it is compatible with the formats that are expected by the tools commonly
used for developing signal processing and AI algorithms: Python-based software such
as NumPy, pandas, scikit-learn, TensorFlow, and PyTorch, plus engineering software
like MATLAB (see Chapter 5).

While there is no single standard, these tools typically expect data to be stored in
simple, efficient, and filesystem-based formats. Even when training is done at massive

220 | Chapter 7: How to Build a Dataset

scale, in complex distributed infrastructure, the data itself is usually stored on disk in
a relatively simple manner.

As such, you should expect to set up a pipeline for extracting data from your
organizational data stores and transforming it into a simple format for training and
evaluation. We’ll learn about how to do this later.

Table 7-2 provides a quick reference to a variety of data storage solutions, with the
advantages and disadvantages of each.

Table 7-2. Data storage solutions
Storage type Advantages Disadvantages
Local #lesystem Fast, simple, and easy to work with No API, no backups, no distributed training;

upper limit of a few terabytes
Network or cloud
#lesystem

Accessible by multiple machines; can store massive
datasets

Slower than local #lesystem; complex to set up
mounts

Cloud object
storage

Simple APIs for reading and writing data; massive
scale

Data must be downloaded to use

Feature store Data can be versioned and tracked; can store
metadata; can query data

Data must be downloaded to use; more complex
and costly than simple storage

End-to-end
platform

Designed speci#cally for edge AI; data exploration
tools built in; tight integration with data capture,
training, and testing

More costly than simple storage

Data stored on a local filesystem is incredibly easy to use and can be accessed very
fast. Even when using sophisticated cloud storage, data is typically copied to the local
filesystem before training a model.

However, it’s risky to store all of your valuable data on a single machine without a
backup. It’s also inconvenient if the data needs to be accessed by multiple people.
Network shares, including cloud-based filesystems—like Amazon FSx, Azure Files,
and Google Cloud Filestore—address this issue. However, they are relatively complex
to access—they must be mounted as drives within an operating system.

Cloud object storage services—like Amazon S3, Azure Blob Storage, and Google
Cloud Storage—provide HTTP APIs that make it much easier to get data in and out.
These APIs can even be used by embedded devices to upload data from the edge,
assuming the hardware is capable enough. However, they have slower access speeds
than drive mounts, so data is typically downloaded to a local disk before it is used.

Feature stores are a relatively new trend in dataset storage. They are designed to
offer simple APIs for data access and storage, along with additional features such
as data versioning and the ability to query data. Feature store offerings from major
providers include Amazon SageMaker Feature Store, Azure Databricks Feature Store,

Storing and Retrieving Data | 221

and Google Cloud Vertex AI Feature Store. There are also open source equivalents
you can host on your own infrastructure, such as Feast.

There are now several end-to-end platforms designed specifically for creating edge AI
applications. Some of these include their own data storage solutions. These are typi‐
cally equivalent to feature stores, but with the benefit of being designed specifically
for edge AI projects. They may include tools for exploring and understanding sensor
data or provide integration points with embedded software development tools. They
are designed to integrate tightly with the other stages in the deep learning workflow.
We learned more about these tools in “Tools of the Trade” on page 136.

Data Versioning
In modern software engineering, it’s expected that all source code is versioned—it
exists within a system that keeps track of how it changes over time. It’s important to
know which version of code is deployed to production, or to a particular embedded
device, so that problems can be traced back to the source.

In addition to code, machine learning systems are built using datasets. This means
it makes a lot of sense to version your data, too. Data versioning tools allow you
to record which data was used to train a given model. They can also help you under‐
stand where your data came from, which allows you to trace problems in production
back to individual samples of data.

Data versioning is a powerful tool for data-centric ML, since it allows you to test
different versions of your dataset and understand which performs better in the field.
It is part of the practice of machine learning operations, described in “Machine
learning operations (MLOps)” on page 151.

Getting Data into Stores
If you’re capturing sensor data for a project, how do you get it into your data store?
The answer depends on your particular circumstances:

#ere is good connectivity on-site
If you have enough connectivity, bandwidth, and energy to send data directly
from the edge, you can push data directly to APIs from your edge devices. This is
easiest if you’re using an end-to-end platform for edge AI that has APIs designed
specifically for on-device use.

Another good option is to use an IoT platform. You can upload data to the
platform using its purpose-built APIs, and then use another system to copy the
data from the IoT platform into your dataset.

222 | Chapter 7: How to Build a Dataset

It’s generally not a great idea to try to upload data directly to a cloud object store
from an embedded device. Since the APIs were not designed for embedded use,
they tend to use inefficient data structures, and their client libraries may not fit
on small targets. This is less of an issue when working with embedded Linux
devices, which have greater capabilities and access to a full OS.

#ere is poor or no connectivity on-site
If you lack decent connectivity, or you don’t have the energy budget to send data
from the very edge of the network, you may have to install some hardware to
allow data to be stored at the edge and collected periodically.

This could mean modifying your existing hardware to add data storage. It might
also mean adding another independent system, situated nearby, that is able to
receive and store data from the device that is generating it. This separate system
could be equipped with better connectivity, or it could be physically collected on
a periodic basis.

Collecting Metadata
As we learned earlier, an ideal dataset is well documented. When designing your
system for collecting data, you should be sure to capture as much information as
possible about the context in which the data is being collected.

This additional information, known as metadata, can be included in your dataset
alongside the sensor data itself. It may include things such as:

• The date and time that data was captured•
• The specific device that collected the data•
• The exact model of sensors used•
• The location of the device on the data collection site•
• Any people involved with the collection of the data•

Metadata can be relevant to an entire dataset, to any subset of its records, or to
individual records themselves. The paper “Datasheets for Datasets” (Gebru et al.,
2018) defines a standard for collecting documentation that describes a dataset in
aggregate, along with subsets of its records. While this is extremely valuable and
should be considered a best practice, there are major benefits to collecting metadata
on a more structured, granular, and machine-readable basis.

In many cases, you will be collecting samples of data that relate to individual entities.
For example, you might be monitoring vibrations from a specific machine, capturing
samples of keywords spoken by particular human beings, or logging biosignal data
from individual farm animals.

Storing and Retrieving Data | 223

https://oreil.ly/8cF1f

In these cases, it’s crucially important to capture as much relevant metadata as possi‐
ble about each individual entity. In the case of a machine, you might capture:

• The exact make and model•
• The machine’s production run•
• The place the machine is installed•
• The work the machine is being used for•

In the case of a person who is speaking keywords, you might try and capture any
conceivable property that might affect their voice. For example:

• Physical characteristics, such as age, gender, or medical conditions•
• Cultural characteristics, such as accent, race, or nationality•
• Personal characteristics, such as profession or income level•

You should attach this metadata to the individual samples that it relates to. This will
allow you to split your dataset into subgroups according to metadata. You can use this
ability to understand two things in great depth:

• During algorithm development, you will understand the makeup of your dataset•
and where you are missing representation and balance.

• During evaluation of your system, you will understand the weak areas of your•
model in terms of subgroups of your dataset.

For example, imagine you are training a model to detect faults in a machine. By
analyzing your metadata, you may discover that most of your data samples have come
from machines of a specific production run. In this case, you may wish to collect data
from other production runs to improve representation of your dataset.

In a different situation, you may be using a keyword dataset to evaluate a keyword-
spotting model. By cross referencing the model’s performance on different data
samples with the samples’ metadata, you may discover that the model performs better
on samples taken from older speakers versus younger ones. In this case, you may
be able to collect more training data from younger speakers in order to improve the
performance.

In this way, metadata helps reduce risk. Without sample-level metadata, you are blind
to the composition of your dataset and the way your model performs on different
groups within it. When you’re armed with detailed information about the provenance
of your data, you’re able to build better products.

224 | Chapter 7: How to Build a Dataset

11 In this case our field may be literal, not metaphorical!

Ensuring Data Quality
Earlier in this chapter we listed the properties that an ideal dataset should have:

• Relevant•
• Representative•
• Balanced•
• Reliable•
• Well formatted•
• Well documented•
• Appropriately sized•

As we learned in “Data-Centric Machine Learning” on page 210, a high-quality
dataset reduces both the amount of data that is required and the impact of algorithm
choice on creating an effective system. It’s a lot easier for machine learning systems to
get useful results when they are trained and evaluated with good data.

But what is the best way to understand the quality of your dataset? The truth is that it
comes down to domain expertise. If you have deep insight into the problem domain
you are tackling, you’ll be able to draw on that insight to help evaluate your data.

Ensuring Representative Datasets
The most important property of a dataset is that it is representative. The reason for
this is that the goal of an AI algorithm is to model a real-world situation in order to
make decisions. The only mechanism it has for learning about the real world is the
dataset used to train or design it. This means that if a dataset is not representative, the
resulting algorithms will fail to represent the real world.

For example, imagine you are building an AI system to help recognize different types
of plant disease, using photographs of afflicted plants. If your dataset does not include
photographs of the correct plants, or the appropriate symptoms, there is no way the
AI system you design can be effective, no matter how sophisticated its algorithms.

Even worse, since the dataset is also used to evaluate the system’s performance, we’ll
have no idea that there is even a problem until we deploy the model to the field.11

This is where domain expertise comes in. If you are an expert in plant diseases, you
can use your knowledge to help understand whether the dataset is representative of
real-world conditions. For example, perhaps your dataset is missing photos of some
species of plants that are affected by the disease you wish to identify.

Ensuring Data Quality | 225

Metadata is incredibly helpful for this process. If your dataset contains metadata that
indicates the plant species in each photograph, a domain expert can simply review the
list of species and immediately notice whether one is missing.

Another useful way to use metadata is to plot the distributions of specific metadata
attributes throughout the data. For example, you might choose to plot the numbers
of samples that belong to each species. If this distribution does not look sensible
with regards to real-world conditions, you may need to collect more data. For exam‐
ple, you may have significantly more records from one species than another, as in
Figure 7-4.

Figure 7-4. #is dataset features many more records for some species than others. #is
may cause problems with fairness; for example, it’s likely your algorithm will perform
much better with species B than with species F.

In addition to the dataset at large, it’s important that representation is maintained
across labels. For example, you should ensure there is equally good representation of
every affected species within each class of plant disease you are attempting to identify.

If your dataset represents individual entities, you should also check to ensure that
your dataset is balanced with regards to those entities. For instance, perhaps all of
the photos of one species were taken from a single plant, while the photos of another
species were taken from multiple plants.

A domain expert should be able to help identify the axes of data that are important
to explore in this way. But what if adequate metadata is not available? This is very

226 | Chapter 7: How to Build a Dataset

common when using data that was not deliberately collected for a specific project. In
this case, you’ll have to embark on a systemic review of the dataset.

Representation and Time
One of the most important aspects of data quality is the idea that your dataset cap‐
tures all of the variation present in the real-world context it is designed to represent.
This is why we care so much about subgroup representation, like the species of plants
in our plant disease dataset.

Plant species is an obvious subgroup in this example, but there is another major
property that affects almost all datasets. That property is time. Our world is in a
constant state of change, which means that data collected about a system at one
moment in time does not necessarily represent the state of the system in the future.

For example, imagine we collect our photographs of plants during the springtime.
Plant appearance naturally varies throughout the course of the year, as they grow
and change with the seasons. If our dataset only includes photos of plants in the
springtime, a model trained on it may not perform well during the autumn when the
appearance of the plants has changed. This property of data is known as seasonality.

To combat this risk, we need to apply domain expertise. A domain expert will
understand if there is likely to be seasonal variation in the data and can guide the data
collection process accordingly—for example, to make sure that we collect images of
plants throughout the year.

The idea of seasonality affects all datasets, not just those containing plants, and a
season in this context can be any period of time. For example, a fitness wearable may
need to account for natural changes in the human body that occur over the course
of a day. If its dataset was collected only during the morning, it may be unreliable at
night.

It’s also worth checking for seasonality in your data even if your domain expert is
not particularly concerned about it. There may be other variables at play, such as the
effect of varying ambient temperatures on sensor noise. There are many algorithmic
techniques you can use to identify seasonality in data, and you can also test your
model on different time-based subgroups of your dataset to help identify any issues.

Reviewing Data by Sampling
The challenge of reviewing data quality, especially when there is limited accompany‐
ing metadata, is that it’s often infeasible to look over every sample of data individually.
Datasets can be gigantic, and the time of domain experts is precious (and expensive).

Fortunately, sampling gives us a way to review data without having to inspect every
last item. For a given dataset, a sufficiently sized random sample of records will have

Ensuring Data Quality | 227

12 The Z score can be looked up in a table such as the one hosted by Wikipedia.

approximately the same representation and balance as the larger dataset. This smaller
sample can be inspected thoroughly by a domain expert in order to understand the
quality of the dataset as a whole.

The tricky part is determining how large a sample needs to be. It needs to be large
enough to have a reasonable probability of including the characteristics we care about
but small enough to be reviewed in a reasonable time.

For example, imagine our domain expert is trying to understand whether the dataset
contains enough instances of a certain species of plant. To do this, they can count the
instances of that plant species in a sample of the data and calculate the ratio between
instances of that species and any others. But how big a sample size is required in
order for us to assume that the ratio between plant species is equivalent between the
sample and the entire dataset?

There’s actually a formula we can use to estimate the sample size. It looks like this:

Sample size = Z score
2 * standard deviation * 1 − standard deviation

margin of error
2

In this formula, the margin of error represents the amount of difference we’re willing
to tolerate between the ratio in our sample and in our full dataset. It’s common to set
this to 5%, meaning we’ll be OK with the ratio in our sample being either 2.5% higher
or 2.5% lower than the ratio in the entire dataset.

The Z score expresses our confidence level, or how confident we need to be that
the number we get will actually fall within the bounds of our margin of error. A
reasonable confidence level is 95%, which would give us a Z score of 1.96,12 assuming
a dataset of typical size (anything more than tens of thousands of samples).

Finally, the standard deviation represents how much we expect the data to vary. Since
there’s no real way to know this ahead of time, we can just play it safe and set it to 0.5,
which maximizes the sample size.

If we plug all of these together, we’ll get the following:

Sample size = 1.96 2 * 0.5 * 1 − 0.5
0.05 2 = 0.9604

0.0025 = 384.16

Since there’s no such thing as a fraction of a sample, we can round the sample size up
to 385. This tells us we’ll need to randomly sample 385 items in order to have 95%

228 | Chapter 7: How to Build a Dataset

https://oreil.ly/3pKd5

13 To make sure the sample is truly random, it’s a good idea to use sampling tools such as those provided by
NumPy.

14 Curtis G. Northcutt et al., “Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks,”
arXiv, 2021, https://oreil.ly/Zrcu1.

15 For a good exploration of the impact of label noise, check out Görkem Algan and Ilkay Ulusoy, “Label Noise
Types and Their Effects on Deep Learning,” arXiv, 2020, https://oreil.ly/1LZKl.

confidence that the ratio of one species to another lies within 5% of the value we see
in our random sample.

It turns out that this number doesn’t vary too much with the size of the dataset, at
least for datasets of sizes that are relevant for machine learning. It’s most sensitive to
changes in the margin of error: if you want a margin of error of only 1%, you’ll need
to review a sample with 9,604 items. Qualtrics provides a handy online calculator that
makes it easy to experiment.

All this goes to say that it should generally suffice to randomly select a few hundred
samples from your dataset.13 This should be a manageable number to review and
will also give you some reasonable insight into whether your dataset has acceptable
quality.

Of course, this assumes that the subgroups you are looking for are large enough to
fit within the error bounds. For example, if a plant species represents less than 5% of
the data, then it’s unlikely we will find it in a sample of 385 items. However, if you
are hunting for underrepresented subgroups, then this will still be a helpful result: it
will guide you to add more data, eventually allowing the group to be detectable with
random sampling.

Label Noise
Beyond representativeness, another major source of dataset quality issues comes from
something called label noise. Labels give us the values that we are trying to use AI
to predict. For example, if we’re training a plant disease classifier, a photo of an
unhealthy plant might be labeled with the exact disease that is afflicting it. Labels
don’t have to be classes, though—for example, if we are solving a regression problem
we would expect the data to be labeled with the number that we are trying to predict.

Unfortunately, the labels attached to data are not always correct. Since most data is
labeled by human beings, it’s common for errors to creep in. These errors can be
quite significant. A research team from MIT found that an average of 3.4% of samples
are incorrectly labeled across a set of commonly used public datasets14—they even
built a website to showcase the errors.

Label noise isn’t a total catastrophe. Machine learning models are pretty good at
learning to cope with noise. But it does have a significant impact,15 and to squeeze the

Ensuring Data Quality | 229

https://oreil.ly/fuBiY
https://oreil.ly/Zrcu1
https://oreil.ly/1LZKl
https://oreil.ly/wEjUk
https://oreil.ly/vrWZI

most performance out of your models it can be worth trying to clean up noisy labels.
The constraints of edge AI already place a premium on model performance. Cleaning
up noisy labels may deliver a good return on investment versus spending more time
on algorithm design or model optimization.

The simplest way to identify label noise is by reviewing random samples of data,
but with large datasets this can be like looking for needles in a haystack. Instead of
sampling randomly, it’s better to focus the search more intelligently.

A good method for doing this is by hunting for outliers within a class. If a sample is
misclassified, it likely appears significantly different from the other members of the
class it is mislabeled as. For simple data, this may be easy using standard data science
tools. For high-dimensional data, like images or audio, it can be more challenging.

The end-to-end edge AI platform that Edge Impulse uses has an interesting solution
to this problem. Edge Impulse’s feature explorer uses an unsupervised dimensionality
reduction algorithm to project complex data into a simplified 2D space, where prox‐
imity correlates with similarity. This approach makes it easy to spot outliers, as in
Figure 7-5.

Figure 7-5. Each dot represents a sample of data, and the distance between dots rep‐
resents their similarity. Outliers, such as those highlighted with arrows, are unusual
samples. When samples appear close to those belonging to other classes, it’s worth
investigating to see if they have been mislabeled.

Another simple way to hunt for noisy class labels is to assume that a model trained
on the data will be less con"dent at classifying noisy samples. If training samples are
ranked in order of a trained model’s confidence at assigning them a class, it’s likely
that mislabeled samples will appear toward the bottom of the list.

In datasets for problems other than classification, label noise looks a bit different.
For example, label noise in a regression dataset consists of error in the target values,
while label noise in an object detection or segmentation dataset means the bounding

230 | Chapter 7: How to Build a Dataset

https://oreil.ly/_9-Ny

boxes or segmentation maps do not line up well with the objects they are supposed
to enclose.

Label noise detection and mitigation is an ongoing area of study. If you have a
particularly noisy dataset it may be worth digging into the scientific literature—a
quick search for “label noise” in Google Scholar will serve you well.

Avoiding label noise
Label noise typically occurs as a result of human error during the labeling of the
data. Humans aren’t great at producing reliable results for repetitive tasks like data
labeling, even if they have the right knowledge. In addition, sometimes it’s unclear
from the data what the correct label should be. For example, even medical experts do
not always agree whether or not a diagnostic image shows a disease.

In many cases, labeling errors are the result of a misunderstanding of the labeling
task. In projects that require nontrivial amounts of labeling work, it’s important to
provide a “rater guide”: a handbook for data labelers. The guide should include
examples that clearly illustrate the guidelines. Over the course of a project, it can be
updated with any interesting or unclear examples that are found.

To minimize the impact of human error, it may be useful to use multiple labelers.
If the labelers disagree on a label, the sample can be flagged for closer inspection.
If there’s no clear answer for a given sample, a voting system can be used to come
up with a definitive label—or the sample can be rejected. The correct course of
action will vary depending on the project and will require the application of domain
expertise.

Common Data Errors
Representation and balance problems are large, structural issues that reflect the way a
dataset is designed, while label noise is a result of the collection process that impacts
individual samples. Similar to label noise, there are a multitude of common errors
that can affect your data on a per-sample level. Here are some of the common issues
seen in edge AI projects:

Label noise
As described in detail in “Label Noise” on page 229, it is common to find
problems with the way that data is labeled, due to human or machine error.

Missing values
For a variety of reasons, some records in your dataset may be missing values for
certain features. For example, a bug in a data collection script might lead to a
value not being written to the correct place. This is quite common, and one of
the most important data preparation tasks is figuring out the best way to address
missing values.

Ensuring Data Quality | 231

https://scholar.google.com

Sensor problems
Technical issues with sensors can result in major data quality issues. Common
problems affecting sensors include excessive amounts of noise, incorrect calibra‐
tion, changes in ambient conditions that impact sensor readings, and degradation
that leads to changes in values over time.

Incorrect values
Sometimes the values in a dataset do not reflect what was measured. For example,
a reading may be corrupted while being transmitted from one place to another.

Outliers
An outlier is a value that is far outside of the expected range. Sometimes outliers
can be natural, but often they are a symptom of things like sensor issues or
unexpected variations in ambient conditions.

Inconsistent scaling
The same value can be represented in many different ways in a digital system. For
example, a temperature reading could be in Celsius or Fahrenheit, and a sensor
value may be normalized or not. If different scaling is used for values for the
same feature, perhaps when data from two datasets are combined, problems will
result.

Inconsistent representation
Beyond scaling, there are many other ways representation can vary. For example,
a data point might be stored as either a 16-bit floating point value between 0 and
1 or an 8-bit integer between 0 and 255. The pixel order in a color image might
be either red, green, blue, or blue, green, red. An audio file may be compressed
as MP3 or exist as a raw buffer of samples. Inconsistent representation can lead
to a lot of difficulties. It’s important to document this stuff well—perhaps even in
metadata attached to each sample.

Unexpected rates
A particularly nasty subtype of inconsistent representation is inconsistency in
sampling rates. For example, a dataset may contain some samples collected at
8 kHz (8,000 times per second) and some collected at 16 kHZ. If they aren’t
processed differently, they’ll seem to contain very different values. It’s especially
bad when variations in sample rate and bit depth combine—at a glance, it’s very
hard to tell an 8 kHz 16-bit sample from a 16 kHz 8-bit sample!

232 | Chapter 7: How to Build a Dataset

Insecure data
If you’re collecting data from the field, it’s imperative that you have secure
mechanisms for collecting and transporting it. For example, you might crypto‐
graphically sign samples in a way that guarantees they have not been tampered
with before being stored. If an attacker has the ability to tamper with your data,
they can directly influence the resulting algorithms, distorting your system in
their favor.

Nearly every AI project will involve work to fix some of these types of errors. In
“Data Cleaning” on page 248, we’ll encounter some of the methods used for address‐
ing these issues.

Drift and Shift
Everything changes and nothing stands still.

—Heraclitus of Ephesus, 535–475 BC

A dataset is just a snapshot in time: it represents the state of a system during the
period when it was collected. Since the real world tends to change over time, even the
highest-quality dataset can start to get a bit stale. This process of change is known by
a few terms, including dri!, concept dri!, and shi!.

When drift occurs, a dataset is no longer representative of the current state of the
real-world system. This means that any model or algorithm developed with the
dataset will be based on a faulty understanding of the system, and it probably won’t
perform well once deployed.

Drift can happen in a few different ways. Let’s explore them in the context of a dataset
that captures the vibration of an industrial machine measured during normal use:

Sudden change
Sometimes there’s an abrupt change in real-world conditions. For example, work‐
ers might move a vibration sensor to a different part of the machine, suddenly
changing the nature of the motion it picks up.

Gradual change
Signals may change gradually over time. For example, the machine’s moving
parts may gradually wear down over time, slowly changing the nature of their
vibration.

Cyclic change
It’s common for changes to happen in cycles, or seasonally. For example, the
machine’s vibration may change with the ambient temperature of its location,
which varies between summer and winter.

Ensuring Data Quality | 233

Because change is inevitable, drift is one of the most common problems faced by AI
projects. It can happen in everything from physical configuration (like the placement
of sensors) to cultural evolution (like the gradual shift in language and pronunciation
over time).

Managing drift requires keeping your dataset updated over time, which we’ll talk
about more in “Building a Dataset over Time” on page 265. It also requires monitor‐
ing the performance of your model in the field, which we will cover in the following
chapters.

Thanks to drift, an edge AI project is never really “finished”—it will almost always
require ongoing effort in either monitoring or maintenance.

The Uneven Distribution of Errors
As we’ve seen, there are many different types of errors that can afflict a dataset. To
achieve a high-quality dataset, you’ll need to keep track of errors and make sure
they stay within acceptable levels. However, it’s important to not only measure the
presence or absence of errors—but also how they affect different subsets of your data.

For example, imagine you are solving a classification problem with a balanced dataset
of 10 classes. Across your dataset, you estimate via sampling that there is around 1%
label noise: 1 in 100 data samples are incorrectly labeled. From an algorithmic point
of view, this may feel acceptable. Perhaps you’ve trained a machine learning model on
the data, and it appears to be effective based on its accuracy.

But what if the 1% of incorrect labels are not evenly (or symmetrically) distributed
across the dataset but instead are concentrated asymmetrically in a single class?
Instead of 1 in 100 samples being mislabeled, 1 in 10 of the data items in this
class might be labeled incorrectly. This could be enough to seriously impact the
performance of your model for this class. Even worse, it will impact your ability to
measure the performance in the same way that you can for other classes.

Errors can also be asymmetric across subgroups that are not necessarily classes. For
example, perhaps your dataset happens to include data that was collected from three
different models of cars. If the sensors installed in one of the car models were faulty,
the data for those models might contain errors. This is even more dangerous than
when errors are asymmetric across classes because the impact is less easy to detect
using standard performance metrics.

Asymmetric errors are likely to result in bias in your algorithms since they impact
the performance of your system more for certain subgroups. When you’re looking for
error in your data, you should take extra care to consider error rates from subgroups
of your data, even if the overall level of error seems acceptable. As usual, domain
expertise will be extremely helpful in determining the subgroups and how to best
inspect them.

234 | Chapter 7: How to Build a Dataset

Preparing Data
Going from raw data to a high-quality dataset is a long road with many steps. In this
next section, we’ll walk that road and begin to understand the process. These will be
our stops along the way:

• Labeling•
• Formatting•
• Cleaning•
• Feature engineering•
• Splitting•
• Data augmentation•

One of these items, feature engineering, is really part of the algorithm development
work we’ll be covering in Chapter 9. However, it deserves a mention here because of
the way its results are used in the process of refining your dataset.

Our journey’s milestones assume you’ve already collected some initial raw data. You
likely don’t have a fully representative or balanced dataset yet, but you have made a
solid start. The data preparation process will help guide you as you grow and improve
your dataset.

Labeling
A typical edge AI dataset reflects a mapping between a set of raw inputs—for exam‐
ple, some time series sensor data—and a description of what those inputs mean.
Our task is often to build or train a system of algorithms that can perform this
mapping automatically: when presented with a set of raw inputs, it tells us what those
inputs mean. Our application can then use that assumed meaning in order to make
intelligent decisions.

In most datasets, that description of meaning comes in the form of labels. As we’ve
seen, creating reliable algorithms requires high-quality labels. There are a few differ‐
ent ways that data can be labeled, and any given project may use a combination of
them:

Labeling using features
Some datasets are labeled using their own features. For example, imagine we’re
building a virtual sensor—a system that uses the signal from several cheap sen‐
sors to predict the output of one sensor that is higher quality but prohibitively
expensive. In this case, our dataset would need to contain readings from both
the cheap sensors and the expensive one. The readings from the expensive sensor
would be used as labels.

Preparing Data | 235

Features may also be processed before they are used as labels. For example,
imagine we wish to train an ML model to predict whether it is daytime or
nighttime based on sensor data. We might use the timestamp of each row in
our dataset, along with information about the local sunrise and sunset wherever
the data was collected, to determine whether it was captured during daytime or
nighttime.

Manual labeling
Most datasets are labeled deliberately, by human beings. For some datasets this is
easy: if samples are collected during specific events, it may be obvious what their
labels should be. For example, imagine you’re collecting a dataset of vibration
data from a vehicle, labeling it as either “moving” or “idle.” In this case, if you’re
sitting in the vehicle at the time, you already know how each sample should be
labeled.

In other cases, labeling may be a tedious manual process where a human being
looks at each record in a previously unlabeled dataset and determines what the
correct label should be. This process can be challenging: for example, it may
require some training or skill to determine the correct label to apply. In some
cases, even well-trained experts may find it hard to agree on the correct labels—
medical imaging data often suffers from this problem.

Even if a task is easy, human beings will naturally make mistakes. Manual label‐
ing is one of the most common causes of dataset quality issues. It’s also the most
expensive to detect and correct, so it’s worth making sure you get it right.

Automated labeling
Depending on your dataset, it may be possible to apply labels automatically. For
example, imagine you’re planning to train a tiny, on-device ML model that can
identify different species of animals from photographs. You may already have
access to a large, highly accurate ML model that is able to perform this task but
is much too big to fit on an embedded device. You could potentially use this large
model to label your dataset automatically, avoiding the need for human effort.

This approach can save a lot of time, but it’s not always possible. Even if it is
possible, it’s smart to assume that the automated system will make some mistakes
and that you’ll need some process for identifying and fixing them.

It’s worth bearing in mind that there’s often a difference between the labels of the
large existing model and the model you are trying to train. For example, imagine
you’re building a system to recognize wildlife sounds. Your goal is to deploy a
tiny model that can identify a sound as being made by either a bird or a mammal.
If your large model is designed to identify individual species, you’ll have to map
each of these to either the “bird” or “mammal” label.

236 | Chapter 7: How to Build a Dataset

16 See “Anomaly detection” on page 99.

Assisted labeling
It’s possible to design a hybrid approach between manual and automated labeling
that provides the best of both worlds: direct human insight combined with the
automation of tedious tasks. For example, imagine you are tasked with drawing
bounding boxes around specific objects in a dataset of images. In an assisted
labeling system, a computer vision model may highlight areas of interest in each
image so you can inspect them and decide which require bounding boxes to
be drawn.

Not all problems require labels
Depending on the problem you’re trying to solve, you may not even need labels—
although most of the time you will.

In “Classical machine learning” on page 103, we encountered the ideas of supervised
and unsupervised learning. In supervised learning, a machine learning algorithm
learns to predict a label given a set of input data. In unsupervised learning, the model
learns a representation of the data that can be used in some other task.

Unsupervised algorithms do not require labels. For example, imagine we’re training
a clustering algorithm for anomaly detection.16 The algorithm does not need labeled
data; it just attempts to learn the innate properties of an unlabeled dataset. In this
case, it could be argued that the labels are implicit: since the clustering algorithm
must be trained on data representing normal (nonanomalous) values, it follows that
your training dataset must have been carefully curated to ensure that it only contains
nonanomalous values.

If you suspect you may be able to solve your problem with an unsupervised algo‐
rithm, you should try it out as an experiment early on in your process. You might find
that you can get away without labeling much data, which would be a big savings in
cost, time, and risk. However, it’s likely that the majority of problems will turn out to
require supervised learning.

Even if you’re using an unsupervised algorithm, it is typically important to have some
labeled data to use for testing. For example, if you’re solving an anomaly detection
problem, you’ll need to obtain some examples of both normal values and anomalous
values. These examples will need to be labeled so that you can use them in evaluating
the performance of your model.

Semi-supervised and active learning algorithms
Labeling is one of the most expensive and time-consuming aspects of dataset collec‐
tion. This means it’s common to have access to a large pool of unlabeled data and a

Preparing Data | 237

17 We might also use some mechanism that gives the manually labeled items more weight during training.

smaller amount that has labels. Many organizations interested in edge AI may have
stores of IoT data that they have been collecting over long periods of time. It is
plentiful—but unlabeled.

Semi-supervised learning and active learning are two techniques designed to help
make use of this type of data. The concept underlying both is that a model partially
trained on a small, labeled dataset can be used to help label more data.

Semi-supervised learning, shown in Figure 7-6, begins with a large, unlabeled dataset.
First, a small subset of this dataset is labeled, and a model is trained on the labeled
records. This model is then used to make predictions on a batch of unlabeled records.
These predictions are used to label the data. Some of them will likely be incorrect, but
that’s OK.

Figure 7-6. Semi-supervised learning.

These newly labeled records are then combined with the original labeled data and a
new model is trained using all of it.17 The new model should be at least a bit better
than the old one, even though it was trained on data that the old one helped to label.
The process is then repeated, with progressively more data being labeled until the
model is good enough for production use.

238 | Chapter 7: How to Build a Dataset

The second technique, active learning, is a little different. The process, shown in
Figure 7-7, begins in the same way, with an initial model being trained on the small
amount of labeled data that is available. However, the next step is different. Instead of
automatically labeling a random sample of data, the model is used to help select a set
of records from the dataset that look like they would be the most useful ones to label.
A domain expert is then asked to label these samples, and a new model is trained that
makes use of them.

Figure 7-7. Active learning.

The selection process is designed to maximize information gain by identifying which
of the unlabeled samples contain the most information that will help the model learn.
The two most common selection strategies are known as uncertainty sampling and
diversity sampling, and they can be used either individually or in combination.

Uncertainty sampling is based on con"dence. If the initial model appears confident at
classifying a record then it can be assumed that there isn’t much more information
to be gained from using that record in training. If a model isn’t confident about a
particular record, that gives us a signal that the model has not seen many samples
similar to it and does not know what to make of it. It’s these samples that it’s most
impactful for us to label and add to the dataset.

Preparing Data | 239

Diversity sampling involves using statistical techniques to understand which of the
samples best represent the underlying distribution of the data. For example, we might
attempt to find a way to quantify the similarity between any two samples. To select
new samples to label, we’d look for those that seem the most different to those in our
existing labeled dataset.

This overall process—selecting a few samples to label, incorporating the new samples
into the training data alongside the existing labeled samples, and retraining the
model—happens as many times as necessary to get a model that performs well.

While these techniques are relatively new, they work very well. The section on
“Labeling tools” on page 241 gives some examples that can help you use them.

That said, active learning tools are a potential source of bias in the labeling process.
To evaluate them, it’s a good idea to compare their results to the results of labeling
randomly selected samples (instead of those selected by your active learning work‐
flow). This will allow you to better understand the type of model that your active
learning process is creating.

Bias in labeling
In “Label Noise” on page 229, we discussed how label noise is a significant problem
in datasets. One major source of label noise is bias in the labeling process. When this
occurs, the dataset ends up reflecting the biases of the people and tools who are doing
the labeling—rather than reflecting the underlying situation you are trying to model.

Bias in a Quality Control System
Imagine that you wish to create a system to detect defects in industrial products for
a manufacturing company. You have collected a dataset of images of products and
wish to label them as either “defective” or “normal.” You work with a domain expert to
walk through the dataset and apply the relevant labels.

This sounds great, in theory. However, your domain expert is new to the company
and has only worked on the company’s most recent industrial product. They are able
to competently label defective items for this product. Unfortunately, your dataset also
includes examples of older products. With these items, your domain expert is less
confident, and their labels have a higher chance of being incorrect.

Through the labeling process, your dataset has taken on the bias of your domain
expert, who is new to the job and unfamiliar with some of the company’s products.
This means that the system you are creating will also be less competent at recognizing
defective instances of these products. When your system is used in production it may
fail to identify defective items, or it may flag normal items as being defective. Both of
these cases will cost the company money.

240 | Chapter 7: How to Build a Dataset

This is just one way that bias during labeling can impact the quality of your dataset.
Unfortunately, these types of problems are common to the point of being almost
inevitable. In addition, since your dataset is your most powerful tool for evaluating
your system, any resulting bias in your system may be hard to detect.

The best way to avoid labeling quality issues is to have a rigorous procedure for
evaluating the correctness of your labels. This might include:

• Using legitimate domain experts who have deep experience with the subject•
matter

• Following a documented labeling protocol established by domain experts•
• Relying on multiple labelers who can check each other’s work•
• Evaluating samples of your labeled data for quality•

This will increase the cost and complexity of your labeling process. If the cost of
producing a high-quality dataset is beyond what you can afford, your project may not
be feasible at the current budget. It’s better to abort a project than release a harmful
system to production.

Labeling bias is not only a feature of data that has been labeled by hand. If you use
an automatic system to help label your data, any biases present in this system will also
be reflected in your dataset. For example, imagine you are using the output of a large
pretrained model to help label records in a new dataset that will be used to train an
edge AI model. If the performance of the large model is not uniform across all of the
subgroups in your dataset, your labels will reflect these same biases.

Labeling tools
There are several different categories of tools that can help with labeling data. The
best choice will vary depending on the project:

• Annotation tools•
• Crowdsourced labeling•
• Assisted and automated labeling•
• Semi-supervised and active learning•

Let’s explore each one in turn.

Annotation tools. If your data needs to be labeled or evaluated by a human being,
they’ll need to use some kind of tool. For example, imagine you’re building a dataset
of photographs labeled with any animals they contain. You’ll likely need some form of
user interface that can display each photograph and allow a domain expert to specify
the animals that they see.

Preparing Data | 241

The complexity of these tools will vary depending on the data. A labeling interface for
a dataset used for image classification will be relatively simple; it just needs to show
photographs and allow the user to specify labels. An interface for an object detection
dataset will need to be more complex: the user will have to draw bounding boxes
around the objects they care about.

More exotic types of data, such as time series sensor data, may require more sophis‐
ticated tools that can help visualize the data in a way that a domain expert can
understand.

Annotation tools are pretty much a requirement for interacting with a dataset of
sensor data in any meaningful way. They’re needed not only for labeling but also for
visualizing and editing existing labels, since the evaluation of labels is an important
part of the process.

Annotation tools are available as both open source and commercial software. Some
things to look out for are:

• Support for the data type you are working with•
• Support for the problem you are trying to solve (e.g., classification versus•

regression)
• Collaborative features, so multiple people can work on labeling•
• Automation, and other features explained later in this section•

Crowdsourced labeling. It’s common for a team to have more data to label than they
can handle internally. In this case, it may be useful to use crowdsourced labeling
tools. These tools allow you to define a labeling task and then recruit members of the
public to help complete it. The people helping to label your data may be compensated
financially, receiving a small amount of money for each sample they label, or they
might be volunteers.

The big advantage of crowdsourced labeling is that it can help you quickly label large
datasets that would otherwise take prohibitively long. However, since the labeling
process depends on minimally trained members of the public, you can’t rely on any
domain expertise.

This may put some tasks out of reach: for example, anything that requires sophistica‐
ted technical knowledge. Even for simpler tasks, you are likely to end up with far
more quality issues than you would if your data was labeled by a domain expert. In
addition, there’ll be some significant overhead involved with defining the task clearly
enough that members of the public can understand it. To get a good result, you’ll
have to educate your labelers on how to accurately complete the task.

242 | Chapter 7: How to Build a Dataset

Beyond quality issues, there are also confidentiality concerns: crowdsourcing may not
be an option if your dataset contains sensitive, private, or proprietary information. In
addition, crowdsourced datasets are potentially subject to manipulation by malicious
actors.

Assisted and automated labeling. Assisted and automated labeling tools use some kind
of automation to help humans (whether domain experts or crowdsourced labelers)
rapidly label large amounts of data. On the simple end, this might involve using basic
signal processing algorithms to help highlight areas of interest or suggest labels. More
sophisticated tools may use machine learning models to help. The following examples
of assisted labeling tools are taken from Edge Impulse.

First, this object detection labeling tool makes it easier to draw bounding boxes
around objects in a sequence of images. It uses an object tracking algorithm to
identify previously labeled items in subsequent frames, as shown in Figure 7-8.

Figure 7-8. Object tracking for labeling in Edge Impulse; cars that are labeled are tracked
between successive frames.

In a more complex example of labeling tools, the data explorer in Edge Impulse
Studio uses a clustering algorithm to help visualize data, with similar samples appear‐
ing closer together, allowing users to quickly label samples based on those they are
adjacent to. This is shown in Figure 7-9.

Preparing Data | 243

https://oreil.ly/IkzTs
https://oreil.ly/Qxs5j
https://oreil.ly/Qxs5j

Figure 7-9. #e data explorer in Edge Impulse being used to label a keyword-spotting
dataset.

Finally, entire pretrained models can be used to help automatically label data. For
example, Figure 7-10 shows the use of an object detection model pretrained on a
public dataset in order to label instances of 80 known classes of objects.

Assisted labeling can save time and effort by shifting work from the human labeler to
an automated system. However, since the automated system is unlikely to be perfect,
it shouldn’t be used alone—there needs to be a human “in the loop” to ensure good
quality.

244 | Chapter 7: How to Build a Dataset

https://oreil.ly/IZMoT
https://oreil.ly/IZMoT

18 Activations are taken from a layer toward the end of the model, acting as embeddings.

Figure 7-10. Data can be labeled automatically using pretrained models, as shown in
this screenshot from Edge Impulse.

Semi-supervised and active learning. As discussed in “Semi-supervised and active learn‐
ing algorithms” on page 237, various techniques exist that can help reduce the burden
of labeling a dataset by using a partially trained model to assist. These methods
are similar to assisted labeling, but they’re especially exciting because they can intelli‐
gently reduce the amount of labeling that needs to be done. For example, an active
learning tool may suggest a small subset of the data that needs to be labeled by hand
in order to accurately provide automatic labels for the rest of the data.

Both techniques involve an iterative process of labeling a subset of data, training a
model, and then determining labels for the next set of data. Over multiple iterations
you will end up with an effective dataset.

An interesting variant of active learning can be found in Edge Impulse Studio’s
data explorer. The data explorer can use a partially trained model to help visualize
an unlabeled dataset as clusters.18 These clusters can be used to guide the labeling
process, with the goal of ensuring clusters are distinct and that each contains at

Preparing Data | 245

https://oreil.ly/sDAif
https://oreil.ly/sDAif

least some labeled samples. Figure 7-11 shows a dataset being clustered based on a
partially trained model.

Figure 7-11. Data is clustered according to the output of a partially trained model; the
visualization can be used to improve data quality by guiding labeling or identifying
ambiguous samples.

As we’ve seen, data labeling has a major impact on the quality of AI systems. While
there are sophisticated tools available that can reduce the required work, labeling will
typically represent a large portion of the hours spent on an AI project.

Formatting
There’s an almost infinite variety of formats that can be used to store data on disk.
These range from simple binary representations to special formats designed specifi‐
cally for training machine learning models.

Part of the data preparation process is bringing data together from disparate sources
and making sure it is formatted in a convenient way. For example, you may need to
pull sensor data from an IoT platform and write it into a binary format in preparation
for training a model.

Each data format has different benefits and drawbacks. Here are some of the
common varieties:

246 | Chapter 7: How to Build a Dataset

Text formats
Formats like CSV (comma-separated values) and JSON (JavaScript Object Nota‐
tion) store data as text. For example, the CSV format stores data as text separated
by delimiters, commonly either commas (hence the name) or tabs. It is very
simple to work with since you can read and edit the values with any text editor.
However, text-based formats are very inefficient—the files take up more space
than binary formats, and they require more computational overhead to access
and process.

CSV and JSON files are fine for small datasets that can be read entirely into
memory, but with larger datasets that must be read from disk, it is better to
translate the data into a binary format first.

Image and audio "les
Images and audio are common data types and have their own typical formats
(think JPEG images and WAV audio files). It’s pretty common to store image
and audio datasets as separate files on disk. While this isn’t the fastest possible
solution, it’s good enough in many cases. Datasets stored in this way have the
benefit of being easy to read and modify without any special tools. They are
typically used along with manifest files (see the tip “Manifest Files” on page 248).

Some specialized types of data, such as medical imagery, have their own special
formats that encode metadata, such as position and orientation.

Direct access binary formats
A binary data format is one that stores data in its native form (sequences of
binary bits) as opposed to encoded in a secondary format (as in text-based
formats). For example, in a binary format the number 1337 would be stored
directly in memory as the binary values 10100111001. In a text-based format the
same number might be represented in a much larger value due to the overhead
of text encoding. For example, in the text encoding known as UTF-8 the number
1337 would be represented in the bits 00110001001100110011001100110111.

In a direct access binary format, many data records are stored in a single binary
file. The file also contains metadata that allows the program reading it to under‐
stand the meaning of each field within a record. The format is designed so that
any record in the dataset can be accessed in constant time.

Some common direct access binary formats include NPY (used by the Python
mathematical computing library NumPy) and Apache Parquet. Different formats
have different performance trade-offs, so it’s useful to select the appropriate one
for your specific situation.

Preparing Data | 247

Sequential binary formats
Sequential binary formats, such as TFRecord, are designed to maximize effi‐
ciency for certain tasks, such as training machine learning models. They provide
fast access in a specific, preset order.

Sequential formats can be very compact and are fast to read. However, they are
not as easy to explore as other data formats. Typically, transforming a dataset
into a sequential format would be done as a last step before training a machine
learning model. They are only really used for large datasets, where efficiency
savings result in significant reductions in cost.

Manifest Files

A manifest file is a special file that acts as an index to the rest of
your dataset. For example, a manifest file for an image dataset may
list the names of all of the image files that are intended to be used
during training. A common format for manifest files is CSV.
Since a text-based manifest file is simple and easy to work with,
it’s a convenient way to keep track of your data. Creating a sample
of your dataset is as simple as selecting some of the rows of your
manifest file at random.

Your dataset will typically occupy several different formats along its journey. For
example, you may start with data from several different sources, perhaps in a mixture
of text-based and binary formats. You may then choose to aggregate the data together
and store it in a direct access binary format before cleaning and processing it. Finally,
in some cases you might choose to translate that same dataset into a sequential binary
format for training.

Data Cleaning
As you start to pull your dataset together into a common format, you’ll need to
make sure that all of the values it contains meet a consistent standard for quality. In
“Common Data Errors” on page 231, we encountered the main types of problems that
you will see in datasets.

Errors can creep in during any step of the process of collecting and curating a dataset.
Here are some examples of errors occurring at different stages:

• Outliers in raw sensor data caused by faulty hardware•
• Inconsistencies in data formats when aggregating data from different devices•
• Missing values due to issues joining data from multiple sources•
• Incorrect values due to bugs in feature engineering•

248 | Chapter 7: How to Build a Dataset

Cleaning a dataset is a process that involves several steps:

1. Auditing the data using sampling to identify types of error (you can use the same1.
approach to sampling discussed in “Reviewing Data by Sampling” on page 227)

2. Writing code to fix or obviate the types of errors you have noticed2.
3. Evaluating the results to prove the issues have been fixed3.
4. Automating step 2 so that you can fix the entire dataset and apply the same fixes4.

to any new samples that are added in the future

Unless your dataset is quite small (for example, it is less than a gigabyte) it will
typically make sense to operate on samples of data rather than the entire dataset.
Since large datasets take a lot of time to process, working with samples will reduce the
feedback loop between identifying issues, fixing them, and evaluating the fixes.

Once you have a fix that you are happy with on a sample of data you can confidently
apply the fix to the entire dataset. That said, it’s still a good idea to evaluate the entire
dataset as a final step to make sure there are not issues that were missed during
sampling.

Auditing your dataset
The problems listed in “Common Data Errors” on page 231 are typical of the types
of problems you will run into. But how do you figure out which errors are present in
your dataset?

The most powerful tools for identifying data cleanliness issues are those that allow
you to view your dataset (or a representative sample of it) as a summary. This could
mean creating a table that shows descriptive statistics and types that are present for a
particular field. It may also mean plotting the distribution of values in a chart, allow‐
ing a domain expert to assess whether the distribution is in line with expectations.

The Python library pandas is a fantastic tool for exploring and summarizing datasets.
Once loaded into a pandas data structure, a DataFrame, the values of a dataset can be
summarized. For example, the following command prints a statistical summary for
the values in a time series:

>>> frame.describe()
 value
count 365.000000
mean 0.508583
std 0.135374
min 0.211555
25% 0.435804
50% 0.503813
75% 0.570967
max 1.500000

Preparing Data | 249

https://pandas.pydata.org
https://oreil.ly/69vWh

By looking at the statistics, we can see that the values for this time series are centered
around 0.5, with a standard deviation of 0.13. We can use domain expertise to
understand whether these values seem reasonable.

Even better, the Python library Matplotlib allows us to visualize our data. For exam‐
ple, we can easily print a histogram for our data frame:

plt.hist(frame['value'])
plt.show()

The resulting plot is shown in Figure 7-12. The sensor readings clearly form a normal
distribution.

Figure 7-12. A histogram of a value in an example dataset.

From the histogram, we can see that the data is mostly centered around 0.5—but a
few points have a value around 1.5. A domain expert can interpret this to understand
whether the distribution seems appropriate. For example, perhaps a sensor issue has
resulted in some outliers that do not reflect accurate readings. Once we’ve identified
an issue we can dig deeper to determine the appropriate fix.

There are limitless ways to summarize data using common data science tools such as
those in the Python and R ecosystems. An engineer or data scientist working on an

250 | Chapter 7: How to Build a Dataset

https://matplotlib.org
https://oreil.ly/nfCXD

edge AI project must be able to collaborate with domain experts to help explore the
data and identify errors.

Fixing issues
Once you’ve discovered an error in your dataset, you will need to take some action.
The type of action you will be able to take depends on the kind of error you have
found and the overall context within which you are collecting data.

These are the main methods at your disposal when addressing errors:

• Amending values•
• Substituting values•
• Excluding records•

In addition, once you have addressed any issues in the dataset you may need to
address whatever upstream problem was the cause.

Amending values. In some cases, it may be possible to fix errors entirely. Here are
some examples:

• Inconsistencies in data formats might be addressed by converting to the correct•
format.

• Missing values may be found and filled in if the data is available from another•
source.

• Faulty values due to bugs in feature engineering code can be fixed.•

Typically, you can only fix errors entirely if the original raw data is available some‐
where. In some cases, you may still not be able to find the correct value. For example,
if some of your data was mistakenly captured at too low a frequency then it will not
be possible to recover the original signal—just an approximation.

Substituting values. If you can’t fix an error, you may still be able to substitute a
reasonable value. Here are some examples of this happening:

• Missing values might be replaced with the mean of that field across the entire•
dataset.

• Outliers might be clipped or moderated to a reasonable value.•
• Low-frequency or low-resolution data can be interpolated to approximate higher•

detail.

Substitution allows you to make use of a record even if some of the information
it contains is missing. However, in exchange, it will introduce some noise to your

Preparing Data | 251

dataset. Some machine learning algorithms are good at tolerating noise, but whether
the information preserved is worth the added noise is a judgment call that will have
to be made based on the application.

Excluding records. In some cases, errors may be unsalvageable, requiring you to dis‐
card affected records from your dataset. Here are some examples:

• A missing value may render a record unusable.•
• Data from a faulty sensor may be beyond repair.•
• Some records may be from sources that do not meet data security standards.•

Rather than just deleting records that have problems, it’s a good idea to mark them as
problematic but store them somewhere. This will help you keep track of the kinds of
issues that are occurring, and which types of records are being affected.

The correct way to address an error depends entirely on the context of your dataset
and application. To obtain good results it’s important that both domain expertise and
data science experience are applied.

Writing Code to Fix Errors
The code that you are writing to fix errors needs to be high quality, well documented,
and placed under source control—along with some record of its dependencies. This
transformation code is both a record of the changes you have made to your dataset
and a way to automate any future fixes.

Without a well-kept record, people working with the dataset in the future will not
know how it was created, what its quirks are, or how it may have been reshaped in the
pursuit of quality.

This code forms part of your data pipeline, which we’ll be discussing in “Data
Pipelines” on page 263.

Evaluation and automation
Once you’ve fixed the errors in a sample or subset of your data, you should perform
another audit. This will help catch any problems that your efforts may have inadver‐
tently introduced—along with any issues that may have been masked by the issues
you have fixed. For example, you may remove the most egregious outliers from your
dataset only to discover that there were other, less extreme outliers that are still
a concern.

252 | Chapter 7: How to Build a Dataset

Once you’ve validated your fixes for a subset you can apply the fixes to your entire
dataset. For large datasets, you’ll need to automate this as part of a data pipeline (see
“Data Pipelines” on page 263). Perform the same sort of sampling-driven audit with
more of your dataset until you are confident that the issues have been adequately
resolved.

Keep a copy of your original, unimproved dataset so that you can
roll back to it if you need. This will help you experiment without
feeling afraid of making mistakes and losing data.

It’s important that you keep track of the types of records that have been affected
by errors. It may be the case that errors are disproportionately impacting certain
subgroups of your data. For example, imagine you are training a classification model
on sensor data. You may have a serious problem with some of your sensor readings
that requires the associated records to be discarded. If these problems affect one of
your classes more than the others, it may impact the performance of your classifier.

With this in mind, you should make sure your dataset still has a good standard of
quality (as we explored in “Ensuring Data Quality” on page 225) a!er any fixes have
been applied.

Keep track of how common various types of errors are in your dataset. If the propor‐
tion of bad records is high, it may be worth trying to fix any upstream cause before
spending too much time on trying to repair the damage.

As your dataset grows, it will change—and it’s possible for new issues to be intro‐
duced. To help identify any problems, it’s a great idea to create automated assertions
based on your initial evaluation. For example, if you’ve worked hard to improve
your dataset by removing extreme outliers, you should create an automated test that
proves that the dataset has the expected amount of variance. You can run this test
every time you add new records, ensuring you catch any new problems.

Fixing balance issues
So far we’ve discussed how to fix errors in the values of a dataset. However, one of
the most common problems with datasets is that they are unbalanced: they contain
uneven numbers of records for their various subgroups. In “Ensuring Representative
Datasets” on page 225, we used the example of a dataset of images showing plant
diseases. In this context, if a dataset had a higher number of images showing one
plant species than another it may be considered unbalanced.

The best way to fix balance issues in a dataset is to collect more data for the underre‐
presented subgroups. For example, we could go back into the field and collect more
images for the underrepresented plant species. However, this isn’t always feasible.

Preparing Data | 253

If you have to make do, you can potentially address balance issues by oversampling
the underrepresented groups. To do this, you might duplicate some of the records for
these groups until all subgroups have the same number of records. You could also
undersample the overrepresented groups by throwing some of their records away.

This technique can be useful when you’re building a dataset to use to train a machine
learning model. Since models’ learning is typically guided by aggregated loss values
for an entire dataset if a subgroup is underrepresented it won’t have much impact on
the model’s learning. Balancing out the numbers through sampling can help.

However, oversampling will not help if you simply do not have enough data to
represent the true variance of the affected subgroup in the real world. For example,
if one species in our plant dataset is only represented by images from a single plant,
oversampling them may not lead to a well-performing model—since in the real
world, there is a lot of variation between individual plants.

You should also be careful about using oversampled data to evaluate a system. The
results of your evaluation will be less reliable for the subgroups that you have over‐
sampled.

An equivalent technique to oversampling is the weighting of subgroups during train‐
ing. In this technique, each subgroup is assigned a weight—a factor that controls
its contribution to either the training or evaluation process. Subgroups can be given
weights that correct for any balance issues. For example, a subgroup that is underre‐
presented might be given a higher weight than a subgroup that is overrepresented.

Some datasets are naturally unbalanced. For example, in object recognition datasets
the areas in images that contain objects are commonly smaller than the areas that
do not.

In these cases, where resampling may not work, weighting is often used to increase
the contribution of the underrepresented data to the training of the model.

Anomaly Detection and Balance
In anomaly detection, the goal is to identify unusual inputs. In some cases, the antici‐
pated inputs are so unusual that no examples of them have occurred. For example, an
industrial plant might want to use anomaly detection to provide warning in advance
of a catastrophic failure. If a failure of this nature has never occurred before, it may
not be possible to obtain example data.

In this situation, your dataset will consist of samples that represent nominal oper‐
ation. Your task is to create a system that will identify when conditions become
significantly different from that baseline. In terms of balance and representation, this
means you should strive to capture a wide range of nominal conditions. For example,

254 | Chapter 7: How to Build a Dataset

the work done in an industrial plant can vary day to day or seasonally. It’s important
that your dataset contains representative samples from all of the possible modes.

Testing anomaly detection systems can be challenging when no examples of true
anomalies are available to build a test dataset. It may be necessary to simulate possible
changes to determine whether they are picked up. In an industrial plant, this could
potentially be done by deliberately running machines in an unusual way, or in a
way that simulates a breakdown. You can also create synthetic data that introduces
potential anomalies. For example, you could take a nominal input and modify it to
simulate various changes. All of this will require input from domain experts.

Deploying a system that has not been tested on real-world data is never advisable.
It should only be done within the tightly limited scope of a predictive maintenance
scenario such as this one, and there should be a realistic understanding from stake‐
holders of the fact that the system’s efficacy has not been proven. Postdeployment,
there will need to be a period of intense scrutiny and evaluation to ensure the model
is performing adequately.

Even then, it’s worth trying to find a way to avoid a scenario such as this one. In many
cases, breaking down the problem into smaller ones (for example, identifying known
potential faults that may contribute to a catastrophic failure) may make it easier to
obtain a balanced dataset.

Feature Engineering
The majority of edge AI projects will involve some feature engineering work (see
“Feature Engineering” on page 85). This could be as simple as scaling features (see the
sidebar “Feature Scaling” on page 95)—or it might involve extremely complex DSP
algorithms.

Since ML models and other decision-making algorithms are run on features, not
raw data, feature engineering is an important part of dataset preparation. Feature
engineering will be guided by the iterative application development workflow that
we’ll meet in Chapter 9 but establishing a baseline for features will be necessary at the
dataset preparation stage.

Doing some initial feature engineering will allow you to explore and understand your
dataset in terms of features, not just raw data. Beyond this, some other important
reasons for feature engineering at this stage are:

• Scaling values so that they can be used as inputs to machine learning models•
• Combining values (see “Combining Features and Sensors” on page 93), perhaps•

to perform sensor fusion

Preparing Data | 255

19 During training, a machine learning model will be exposed to the entire dataset multiple times. Precomputing
and caching DSP results avoids the need to run the DSP algorithms repeatedly on the same data, which can
take a lot of unnecessary time.

20 Some people may use slightly different terms for these, but the underlying best practice is universal.

• Precomputing DSP algorithms so that training runs faster19•

It’s almost certain that you will want to iterate on feature engineering later in your
development process—but the earlier you can begin this work, the better.

Splitting Your Data
As we’ve seen, the workflow for AI projects involves an iterative process of algorithm
development and evaluation. For reasons we’ll soon expand on, it’s important for us
to structure our dataset so that it suits this iterative workflow.

This is typically done by splitting a dataset into three parts: training, validation, and
testing.20 Here is what each split is used for:

Training
The training split is used directly to develop an algorithm, typically by training a
machine learning model.

Validation
The validation split is used to evaluate the model during iterative development.
Each time a new iteration is developed, performance is checked against the
validation dataset.

Testing
The testing split is “held out”—it’s kept aside until the very end of a project. It is
used in a final pass to ensure that the model is able to perform well on data that it
has never been exposed to before.

We use separate splits in order to detect overfitting. As discussed in “Deep learning”
on page 106, overfitting is when a model learns to get the correct answers on a
specific dataset in a way that does not generalize to new data.

To identify overfitting, we can first train a model with the training split. We can then
measure the model’s performance on both the training data and the validation data.
For example, we might calculate the accuracy of a classification model on each split:

Training accuracy: 95%
Validation accuracy: 94%

If those numbers are similar, we know that our model is able to take what it has
learned from the training split and use it to make accurate predictions about unseen
data. This is what we want—the ability to generalize. However, if the model performs

256 | Chapter 7: How to Build a Dataset

less well on the validation split it’s a sign that the model has overfit to the training
split. It’s able to perform well on data it has seen before, but not on new data:

Training accuracy: 95%
Validation accuracy: 76%

With significantly low accuracy on the validation split, it’s clear that the model is not
performing well on unseen data. This is a strong signal that the model should be
changed.

But if the validation split allows us to detect overfitting, why do we also need the
testing split? This is due to a very interesting quirk of iterative development in ML.
As we know, our iterative workflow involves making a round of algorithm changes,
testing them on the validation split, and then making more algorithm changes to try
to improve performance.

As we iteratively tweak and change our model to try to get better performance on the
validation split, we may end up fine-tuning the model to the point that it happens to
work well for the training and validation data—but would not work well on unseen
data.

In this case, the model has become overfit to the validation data even though it was
not directly trained on it. Via our iterative process, information about the validation
split has “leaked” into the model: we’ve repeatedly modified it in a way that was
informed by the data in the validation split, resulting in overfitting.

This phenomenon means we can’t necessarily trust the signal that our validation split
is giving us. Fortunately, the testing split gives us a way around this problem. By
keeping the testing split aside until the very end of our process, once all the iteration
has been done, we can get a clear signal that tells us whether our model is really
working on unseen data.

When to Use the Testing Split
The iterative workflow allows information about our evaluation split to “leak” into
the model, since we use the results of evaluation to guide model development. This
means it’s dangerous to use the testing split in an iterative manner: given enough
iterations, we may overfit to the testing split, too.

This makes it very important to be strict about using the testing split. If your results
on the testing split indicate overfitting, you can’t just go back and tweak the model to
try to fix it.

If you discover overfitting using your testing split, the best thing to do is start
development again with a radically different approach. For example, you may select a
different type of ML model, or select a different set of features (or signal processing

Preparing Data | 257

21 Since your testing split should be a random sample of your entire dataset, it’s hard to just go out and collect
a new one. If your testing split was collected a!er the rest of your data, it may represent slightly different
conditions, harming your ability to evaluate.

algorithms) to train on. Once you’ve tried a number of approaches, you can use their
testing split performance to compare them.

This implies that you should be very careful with your testing split. Don’t use it until
you are sure that you are satisfied with your model’s performance on the training and
validation splits. Otherwise, you’re wasting your most precious evaluation tool—and
forcing yourself to start development from scratch.21

How is data split?
Data is typically split by random sampling, according to proportion. A common
standard is to first split the data 80/20, with the 20% becoming the testing split. The
80% split is then itself split 80/20, with the 80% becoming the training split and the
20% becoming the validation. This is shown in Figure 7-13.

Figure 7-13. #e dataset is split into chunks for training, testing, and validation.

Depending on your dataset it may be reasonable to use smaller amounts of data in
your validation and testing splits, keeping more of it for use in training. The key thing
is that each split is a representative sample of the dataset as a whole. If your data has
low variance, this may be achievable with a relatively small sample.

Each split should also be representative in terms of the balance and diversity of the
entire dataset. For example, the training, validation, and testing splits for a plant dis‐
ease classification dataset should each contain the same approximate balance between
different types of plant diseases.

258 | Chapter 7: How to Build a Dataset

If the dataset is well balanced and has a low ratio of subgroups to total number of
samples, this can be achieved simply through random sampling. However, if there are
many different subgroups, or if some are underrepresented, it may be a good idea to
perform stratified sampling. In this technique, the splits are performed individually
for each subgroup and then combined. This means each split will have the same
balance as the overall dataset. A simple example is shown in Figure 7-14.

Figure 7-14. Strati"ed sampling can help preserve the distribution of subgroups when a
dataset is split.

Cross-Validation
If you train on one split and evaluate on another, you will only ever know how
your model performs on those specific splits. This makes your evaluation vulnerable
to random quirks of the particular splits you have chosen. If this is a concern, a
technique known as k-fold cross-validation may be of interest. When using k-fold
cross-validation, a number (k) of different splits are performed, each resulting in
a unique pair of training and validation splits. The model is trained and evaluated
multiple times, once with each pair, and the results are averaged to obtain a fair
representation of the overall performance.

Preparing Data | 259

Cross-validation provides a gold standard for measuring validation performance. It
can be especially helpful when working with smaller datasets, where it may not be
possible to do a great job of creating representative splits. The main drawback is that
it can be time consuming: the model must be trained k times.

Pitfalls when splitting data
Splitting data incorrectly will deny you the ability to measure how your application
performs on unseen data, which is likely to result in bad performance in the real
world. Here are some common mistakes to avoid:

Curating splits
Validation and testing splits are supposed to be representative samples of the
overall dataset. A big no-no is hand-selecting which records are included in each
split. For example, imagine you decided to put the records you think are the most
challenging in the training split—with the theory that it would help your model
learn.

If these records are not represented in the testing split, you won’t have any insight
into how your model is really performing on them. On the other hand, if you put
all your most challenging records in the testing split, your model won’t get the
benefit of being trained on them.

Choosing which records go into each split is a job for a random sampling
algorithm, not something you should do by hand. The Python library scikit-learn
has a good set of tools for performing dataset splits.

Balance and representation problems
As discussed earlier, it’s important that each split has the same balance, and
that all splits are representative. This applies to both classes (for classification
problems) and “unofficial” subgroups. For example, if your data is collected
from several different types of sensors you should consider performing stratified
sampling to ensure that an appropriate proportion of data from each sensor type
is contained within each split.

Predicting the past
For models that perform predictions on time series data, things get a little more
complicated. In the real world, we’re always trying to predict the future based
on the past. This means that to accurately evaluate a time series model we need
to make sure it is trained on earlier values and tested (and validated) on later
ones. Otherwise, we may just be training a model that can predict past values
based on current ones—which probably isn’t what we intended. This “leakage” of
data backwards along the timeline is worth considering any time you are working
with time series.

260 | Chapter 7: How to Build a Dataset

Duplicate values
When working with large amounts of data, it’s easy for records to get duplicated.
There may be duplicates in your original data, or they may creep in during
whatever process you use for splitting data. Any duplicates between splits will
harm your ability to measure overfitting, so they should be avoided.

Changing splits
If you’re trying to compare multiple approaches using testing dataset perfor‐
mance, it’s important that you use the same testing split each time. If you use
a different set of samples each time, you won’t be able to tell which model is
better—any variations may merely be a result of the difference in split.

Augmented testing data
If you’re performing data augmentation (which we’ll learn about in the next
section), only your training data should be augmented. Augmenting your vali‐
dation and testing splits will dilute the insight they give you into real-world
performance: you want them to be composed of pure real-world data. If you
evaluate your model on augmented data you will have no guarantee that it works
on nonaugmented data.

Data Augmentation
Data augmentation is a technique designed to help make the most of limited data.
It works by introducing random artificial variations into a dataset that simulate the
types of variations that are naturally present in the real world.

For example, an image might be augmented by modifying its brightness and contrast,
rotating it, zooming into a specific region, or any combination of the above—as
shown in Figure 7-15.

Any type of data can be augmented. For example, background noise can be mixed
into audio, and time series can be transformed in many different ways. Augmentation
can be performed both before and after feature engineering. Common augmentations
include:

Additive
Incorporating other signals, such as random noise, or background noise sampled
from the real world

Subtractive
Removing or obscuring values, or removing chunks of time or frequency bands

Geometric
Rotating, shifting, squashing, stretching, or otherwise spatially manipulating a
signal

Preparing Data | 261

Filter-based
Increasing and decreasing properties of individual values by random amounts

Figure 7-15. An image of the author’s cat augmented in several di$erent ways.

Augmentation increases the amount of variation in the training data. This can have
the benefit of helping the model generalize. Since there is a lot of random variation,
the model is forced to learn general underlying relationships rather than perfectly
memorizing the entire dataset (which would result in overfitting).

It’s important that data augmentation is only applied to the training split of a dataset.
Augmented records should not be included in validation or testing data since the goal
is to evaluate the model’s performance on real data.

262 | Chapter 7: How to Build a Dataset

Data augmentation is typically accomplished through libraries—most machine learn‐
ing frameworks provide some built-in data augmentation features, and many data
augmentation protocols have been documented in scientific literature and made
available as open source code.

Augmentation can either be performed online or o'ine. In online augmentation,
random changes are applied to each record every time it is used during the training
process. This is great, since it results in a huge amount of random variation. However,
some augmentations can be computationally expensive, so it can potentially slow
down training a lot.

In offline augmentation, each record is randomly changed a specific number of times,
and the changed versions are saved to disk as a larger, augmented dataset. This
augmented dataset is then used to train a model. Since augmentation is done ahead
of time, the training process is a lot faster. However, less variation is introduced when
using offline augmentation because there are a finite (and usually limited) number of
variants created of each record.

The types of augmentations applied to a dataset can be varied, and different variations
may result in models that perform better or worse. This means that the design of
an augmentation scheme must be part of the overall iterative development workflow.
This is one reason why it’s a bad idea to augment your validation or test datasets.
If you were to do so, then any change to your augmentation scheme would also
change your validation or test data. This would prevent you from comparing the
performance of different models against the same datasets.

Designing an appropriate set of augmentations is a task that requires domain exper‐
tise. For example, an expert should have insight into the best types of background
noise to mix into an audio dataset based on the context of the application.

Data Pipelines
Over the course of this chapter, we’ve encountered a sequence of tasks and considera‐
tions that are applied to data:

• Capture•
• Storage•
• Evaluation•
• Labeling•
• Formatting•
• Auditing•
• Cleaning•
• Sampling•

Preparing Data | 263

• Feature engineering•
• Splitting•
• Augmentation•

This sequence of tasks, in whatever order you perform them, can be thought of as a
data pipeline. Your data pipeline begins out in the field, where data is generated by
sensors and applications. It then brings data into your internal systems, where it is
stored, joined together, labeled, examined and processed for quality, and made ready
for use in training and evaluating AI applications. A simple data pipeline is shown in
Figure 7-16.

Figure 7-16. A basic data pipeline for capturing and processing data; every project has a
di$erent data pipeline, and their complexity can vary greatly.

You should consider your data pipeline a critical piece of infrastructure. It should
be implemented in clean, well-designed code that is well documented, versioned,
and includes whatever information on dependencies is required to be able to run it
repeatably.

Any changes to your data pipeline have the potential for major downstream effects
on your dataset, so it’s critical that you understand exactly what is being done—both
during initial development and in the future.

The nightmare scenario is that the processes that led to the creation of a dataset are
lost, since the data pipeline was not documented or can no longer be run. As we saw
earlier, a dataset represents the distillation of domain expertise into an artifact that
can be used to create algorithms.

If the processes used to create that dataset are not documented, then it will no longer
be possible to understand the decisions or engineering that went into its construction.
This will make it extremely difficult to debug problems with the resulting AI systems
and will make it very difficult to meaningfully improve on the system—even if new
data becomes available.

In edge AI, where highly complex sensor data is common, keeping good track of data
pipelines is especially vital. Unfortunately, this nightmare scenario is very common!
It’s only recently, with the rise of MLOps practices, that practitioners have been taking
data pipelines as seriously as they deserve.

264 | Chapter 7: How to Build a Dataset

22 This is presuming that data can be collected in some other way that gets around the connectivity issues that
deployed devices struggle with.

MLOps, a contraction of machine learning operations, is a field of engineering related
to the operational management of machine learning projects. We’ll be digging into
it fully across Chapters 9 and 10. One of the most important reasons to think about
MLOps is to make it possible to improve ML applications over time, by adding new
data and training better models. This is our most important tool for fighting against
the big enemy of production ML projects: drift.

Building a Dataset over Time
As we saw in “Drift and Shift” on page 233, the real world changes over time—often
quite rapidly. Since our dataset is just a snapshot of a moment in time, it will
eventually stop being representative. Any algorithms developed with a stale, outdated
dataset will be ineffective in the field.

The fight against drift is one strong reason why you should always be collecting more
data. With a constant trickle of new data, you can make sure that you are training and
deploying up-to-date models that perform well in the real world.

Edge AI algorithms are often deployed to devices that must tolerate poor connec‐
tivity. This means it’s often very difficult to measure the performance of devices
that are deployed in the field. This provides another key benefit of continuously
collecting data.22 With fresh data available, you can understand the performance of
the same algorithms that have been deployed on devices operating in the real world.
If performance starts to degrade, those devices may need to be replaced. Without
fresh data, you’ll have no way of knowing it.

Beyond drift, it’s pretty much always helpful to have more data. More data means
more natural variation in your dataset, which means superior models that are better
able to generalize to real-world conditions.

From a data-centric ML perspective, data collection itself should be part of our
iterative development feedback loop. If we recognize that our application or model is
falling short in certain ways, we can identify different types of additional data that will
help improve it. If we have a good system for continually improving our dataset we
can close the feedback loop and build more effective applications.

Building a Dataset over Time | 265

Obstacles to Improvement
The reality is that real-world projects often face constraints that make it challenging
to continually improve a dataset. For example:

• Data collection may require custom hardware that is only in the field•
temporarily.

• The process of collecting data may be inherently batch-based, not continuous.•
• There may not be long-term funding available for continued data collection.•

It’s important to bear in mind that without additional data, your ability to guarantee
an application’s performance in the field will decrease over time. If you’re in the
design stages of a project, it may be worth attempting to mitigate some of these
constraints in order to reduce that risk. For example, you may need to ensure the
budget of a project will cover continued long-term monitoring.

In some situations, you may have no way to avoid the risk of undetectable deteriora‐
tion due to drift. If that is true, you should make sure the risks are well documented
and communicated to the end users of the application so that they can determine
whether they can be worked around. These issues may not be obvious to nonexperts;
as the person with the most knowledge, it’s your responsibility to make sure they are
highlighted.

Well-engineered data pipelines are a critical tool in enabling continuous dataset
growth. If you have a repeatable pipeline that can be run on new data, it will
massively reduce the amount of friction involved with adding new records to your
dataset. Without a reliable pipeline, it may prove too risky to add new data—there’s
no guarantee it will consistently match your original dataset.

Summary
The creation of a dataset is a continuous process that starts at the very beginning of
an edge AI project—and never really ends. In a modern, data-centric workflow, the
dataset will evolve along with the design and requirements of your application. It will
change with every iterative step in your project.

We’ll learn more about the role datasets play in the application development process
in Chapter 9. In Chapter 8, we’ll focus on the way applications are designed.

266 | Chapter 7: How to Build a Dataset

CHAPTER 8

Designing Edge AI Applications

The design and development of an application is where all the threads of edge AI
are woven together. It requires an understanding of everything we’ve discussed so far,
including problem framing, dataset collection, technology choice, and responsible AI.
These are in addition to the skills and knowledge required to design a product in the
relevant domain and to implement the design in both software and hardware.

In this chapter, we’ll walk through the process of designing an edge AI application,
and we’ll learn some of the most important design patterns that are used in real-world
applications that can be applied to your own work. By the end of the chapter, you’ll
be comfortable with the requirements of edge AI product design and ready to start
creating your own products.

There are two main parts to the design of an edge AI application: the product
or solution itself, and the technology architecture that makes it work. These two
parts are interdependent. The product design will impact the required technology
architecture, and the constraints of the technology will influence the design.

In addition, the entire design and implementation process is informed by the
specifics of the real-world situation in which the product will be deployed. Your
designs will need to evolve fluidly as you collect data, experiment with different
approaches, and test your solution under real conditions.

This dynamic system requires an iterative design process, where the solution is
incrementally tried, tweaked, and improved. The best way to plan for this involves
developing a strong understanding of both the problem you are trying to solve and
the space of potential solutions.

Hardware product design and embedded software architecture are major topics on
their own. In this book we’ll focus specifically on the design considerations associated
with edge AI.

267

Product and Experience Design
The goal of an edge AI product is to solve a particular problem. Most real-world
problems have several components, all of which must be addressed in order to
consider the problem “solved”:

#e problem itself
How well the product addresses the fundamental issue

#e human element
How well the product meets the expectations of its users

#e broader context
How well the product meets the realities of our world

To illustrate this, let’s consider a hypothetical example.

Tracking Weightlifting Workouts
Many people find it convenient to track their exercise activities using wearables.
For example, a smart watch designed for runners can record the distance, time,
and biosignals associated with a particular run. This helps runners understand the
amount of exercise they are doing and track their progression over time.

However, some activities are more difficult to track than others. The key metrics for
running are distance and time, which are easy to passively measure. Weightlifting,
however, is more complicated. A weightlifting athlete must keep track of:

• The specific movement they are doing (e.g., bench press, squat)•
• The amount of weight they are using•
• The number of repetitions (reps) they successfully performed (e.g., 10 lifts up•

and down)
• The number of sets of reps they performed (e.g., 3 sets of 10 reps)•
• The amount of time they are waiting between each set•

It would be convenient for an athlete to be able to walk into a gym, perform their
exercises, and have an immediate record of what they have done—without having to
remember to jot it down in a notebook.

Let’s consider two different ways we might solve the problem of tracking weightlifting
workouts. Remember, we need to solve for three things: the problem itself, the human
element, and the broader context.

268 | Chapter 8: Designing Edge AI Applications

In our first solution, the athlete wears a smart watch that is equipped with an acceler‐
ometer. Before each set, they input the movement type on the watch using hardware
buttons, along with the weight they are lifting. During a set, the watch keeps track of
the number of reps that are performed, using an AI algorithm to understand when a
rep has been completed based on data from the accelerometer. After the workout, this
information is synced to a mobile application for viewing.

Does this solve the problem itself? Technically, yes—the system allows the athlete to
track their weightlifting workout without a notebook. In a broader context, this solu‐
tion also seems fine: fitness wearables are common, affordable, practically designed,
and well accepted in society.

However, things look less appealing when we consider the human element. Our
design requires the athlete to enter a weight number into their smart watch between
each set. It’s questionable whether this is a superior solution to using a paper note‐
book. In fact, many people find it frustrating to interact with smart device interfaces
when they are in the middle of a workout.

Let’s consider another solution. It would be great to be able to understand which
movement an athlete is performing and the amount of weight they are using without
requiring them to enter data by hand. To achieve this, we could use a small, battery-
powered camera that can be placed on the floor in front of the athlete while they work
out. It would use computer vision techniques to count the amount of weight being
used and determine the movements that are being performed.

From the point of view of the underlying problem, this sounds great—it would
remove the need for a notebook for activity tracking. From a human perspective,
this is a genuine improvement in experience: the athlete can focus on their exercises
without having to interact with a smart device or a notebook in the middle of their
flow.

Unfortunately, in a broader context this solution may not be a good one. Many people
work out at public gyms, where there is an expectation of privacy. Fellow gym users
are unlikely to feel comfortable with being “filmed” by a smart camera during their
workouts. While an edge AI camera could easily preserve privacy by not storing any
of the video footage, it might be tough to explain this to other gym users. The social
context of what is considered acceptable can make it difficult to deploy an otherwise
effective design.

As we can see, it’s critical that your design addresses every aspect of a problem. Edge
AI can overcome a lot of challenges, but there are many cases where usability issues
or the broader human context neutralize its benefits.

Product and Experience Design | 269

Design Principles
A good way to approach design is through a set of principles that provide structure to
our critical thought. Ovetta Sampson, VP of Machine Learning Experience Design at
Capital One, authored a fantastic set of principles that apply specifically to the use of
AI in design. In her own words:

In the age of AI, where speed, scale, and scary can simultaneously all be components
of the products we design, we have to change design from a noun to become a very,
deliberate verb. We’re entering a Brave New World. And that world requires designers
to take on a larger responsibility for the outcomes produced, behavior induced, and
effect on humanity the intelligent products we design to have.

—Ovetta Sampson

Sampson’s ten principles, inspired by an earlier set written by the German designer
Dieter Rams, are as follows, including our own explanation of each point:

Good design solves hard problems
With great power but limited resources, we should focus on solving the problems
that matter.

Good design promotes healthy relationships
Users exist within a network of relationships with other people and other prod‐
ucts, and our design should account for this.

Good design requires malleability
AI enables incredible customization, and we should make use of it to build better
products that work reliably for the people we are designing for.

Good design makes companies that understand and products that serve me
Design should be based on accurate understanding of the needs of individual
users, not by the needs of a marketing department.

Good design acknowledges bias
Bias is always present, and designers must work consciously to mitigate it, and be
transparent about the limits of their products.

Good design prevents dishonesty
Designers must be honest about the potential for negative impact from their
products in order to avoid it.

Good design expects unintended consequences
Unintended consequences in AI systems can systematically harm people, and
good design must acknowledge and work around this fact.

270 | Chapter 8: Designing Edge AI Applications

https://oreil.ly/Ez0ym

Good design fosters equity
AI can inadvertently amplify inequity and injustice, but carefully designed AI
systems can counter this effect.

Good design considers its e$ect on a collective, connected ecosystem
The human contexts where AI is deployed are incredibly complex and diverse,
and good design must reflect this.

Good design purposefully brings order to chaos
AI products should make our world easier to understand and cope with, not
more chaotic than it already is.

Sampson’s original article provides a deeper explanation of each principle.

These principles are based on the acknowledgment that AI derives its power through
scale. Functions that would previously have required human oversight can now be
entirely automated. The associated reduction in cost means that these functions will
become far more widespread and will have a far greater impact than they otherwise
would.

Simultaneously, the nature of AI systems mean that a single implementation—created
by a single engineering team—may end up in widespread use by millions of very
different people. This means that any flaw in a system will also be magnified to affect
large portions of our population.

In practical terms: while a bad doctor might harm thousands of patients over the
course of their career, a bad medical AI system can harm millions. The risk of scaling
harmful systems is why we need to be so careful when designing edge AI products
and is what makes principles like Sampson’s so valuable.

Scoping a Solution
As anyone who works in software or hardware can attest, estimating the amount of
work required to implement a product or feature can be very challenging. Similarly,
AI and ML development are inherently unpredictable. The need for a high-quality
dataset and the exploratory nature of the algorithm development process make it very
difficult to know exactly how long a project is going to take.

Algorithm development naturally informs hardware and software requirements. For
example, a machine learning practitioner may determine that a deep learning model
needs to be a certain size in order to produce acceptable results. The size of the
model will limit the types of devices that it can be deployed to. This means it may
not be possible to begin the hardware development process until at least some of the
algorithm development work has been done.

Product and Experience Design | 271

https://oreil.ly/-4WvU

Things That Can—and Do—Go Wrong
There are many ways an AI project can fail before it really gets started. Here are some
of the most common risks:

• It’s too difficult or expensive to obtain an adequate dataset.•
• There’s not enough signal in the data to train a usable model.•
• The available hardware isn’t capable enough to run a working algorithm.•
• The problem demands a level of precision that AI cannot deliver.•

The additional variables of AI development mean that it’s even harder to make the
right assumptions about the development process as a whole. It can be very easy to
underestimate the amount of work required, or to have to go back to the drawing
board after a significant investment of time and money if it becomes apparent that the
original plans will not suffice.

The nature of AI development makes a “waterfall” development model very risky. It’s
dangerous to assume that your initial assumptions will always hold true. It would be
disastrously expensive to develop a beautiful piece of hardware and then discover at
the last minute that it isn’t capable enough to run the required model.

So how do you avoid this type of problem and make it easier to ship products that
work? The key is to limit your scope. While AI is exciting, and the sky is the limit for
novel applications, it’s much easier to avoid mistakes if you avoid being too ambitious
out of the gate.

A fantastic demonstration of this principle is the reality of the self-driving car. In the
heady days of the mid-2010s, many technologists thought that fully automated self-
driving cars were just around the corner. The deep learning revolution had unlocked
massive progress, and the capabilities of vehicles had made leaps and bounds from
the earliest prototypes. A self-driving world seemed imminent.

Unfortunately, while it’s proven possible to build a self-driving car that can usually get
things right, usually has not proven acceptable when we’re talking about high-speed
interactions with the general public. The last few percentage points of reliability have
gotten exponentially harder to unlock. While it’s likely we’ll see self-driving cars at
some point, they’re still a few years away.

While self-driving cars have stalled, a related—but less ambitious—set of technologies
have become so successful that they are now present in at least a third of all new
vehicles. Advanced driver-assistance systems, or ADAS, is a category of technologies
designed to help human drivers have an easier time on the road. They include
features such as adaptive cruise control, lane centering, and collision avoidance.

272 | Chapter 8: Designing Edge AI Applications

https://oreil.ly/Hz0QK
https://oreil.ly/Hz0QK

ADAS features, a classic use case for edge AI, are designed to help with specific,
individual tasks. They ease the mental and physical burden on drivers and help
improve road safety. While they are not as ambitious as self-driving systems, their
more limited scope allows them to be a lot more successful.

For example, many modern cars feature an adaptive cruise control system that can
take over acceleration, braking, and lane centering while the car is on the freeway.
Because the system only needs to work in this constrained environment, it’s a lot
easier to build it with 100% reliability. While it won’t work at all on city streets, that’s
OK: freeway driving occupies the most time of any long trip, so from the driver’s
perspective it is nearly as good as a self-driving car.

By addressing a limited scope, ADAS systems are able to attain far more utility than
self-driving systems in today’s vehicles. What’s more, the companies developing and
deploying ADAS systems are able to incrementally build their expertise and insight
under real-world conditions. They can keep improving their products while actively
participating in the market, gradually getting closer to the dream of a self-driving car.

This approach is sensible for any edge AI product. Instead of pursuing grand ideas
from the beginning, try to identify the small, useful stepping stones that still deliver
real value. Determine the minimum viable product: a simple, achievable benefit that
is genuinely helpful to your users. Build something out, see how it performs in the
real world, and iterate from there.

Here’s a specific example. Imagine you are building a quality control system for a pro‐
duction line. Today, all quality inspection is done by hand. Time and cost constraints
make it impossible to inspect every item, so random samples are inspected—meaning
some defects make it through.

Your long-term goal might be to inspect every item automatically using an edge
AI vision system, ensuring all defective products are caught, and saving money on
inspections. However, at the outset of the project it may not be clear that this is
achievable. Your dataset may not have examples of every possible type of defect,
making your system hard to test. There’s no way to know if it would work without
trying—but failure could be expensive.

Let’s take a step back and think about the scope of the problem. While catching every
defect may be a big challenge, being able to catch some of them would still be an
improvement on the current situation, since we know some defects make it through.

It may be relatively simple to train a model to detect one specific type of defect (rather
than every defect possible) at least some of the time. If combined with the current
manual inspection process, a model trained to catch one defect type could still
provide a tangible benefit to the factory. They wouldn’t reduce inspection costs, but
they would still catch more defects and increase the average quality of their products.

Product and Experience Design | 273

By limiting the scope to what you know is achievable, you’re able to deliver immedi‐
ate value with greatly diminished risk. On the back of this success, there’s nothing
to stop you from iterating on your solution and gradually attaining the grand vision
you initially had in mind. Even better, you may find that your initial system delivers
enough value that further development is not required.

Setting Design Goals
In “Planning an Edge AI Project” on page 197, we learned about the need to set
specific goals for our application development process. There are three main types of
goals: systemic goals, which reflect on the overall performance of the system, techni‐
cal goals, which reflect on the inner functioning of elements of your algorithms, and
values that you want the system to adhere to.

To be effective, goals must be designed with input from stakeholders and domain
experts (see “Building a Team for AI at the Edge” on page 123). You will need to work
to determine the minimum viable performance characteristics for a project. These
are the criteria that will be used to evaluate the project’s success at both systemic
and technical levels. Wherever possible, they should be quantifiable using standard
metrics for the domain, so you can use them to concretely measure your progress.

The best way to set systemic goals is with an evaluation-first approach.

Systemic goals
An edge AI system is rarely developed as the first and only solution to a problem.
Most of the time there are solutions already in existence. When we’re developing an
AI application, it’s important that we take the time to measure our solution against
the existing ones, not just against itself. If we measure our system against itself, we’re
almost guaranteed to see improvement throughout the development process. But
to know that we genuinely have a better solution than the alternatives, we need to
measure against those, too.

That’s why an evaluation-"rst approach to development can be so powerful. In this
style of approach, the first step of the development process is to come up with a set
of evaluation metrics that are general enough to measure the performance of any
potential solution to the problem—AI or otherwise.

For example, imagine you are developing an edge AI application to help retail
employees know when shelves are empty and need to be restocked. One way to
approach this might be to focus on the technology involved. As a goal, you might
decide that your system must be able to predict with 90% accuracy when a shelf needs
to be restocked.

This sounds pretty good: 90% accuracy means the model will be correct in identifying
that the shelves are empty 9 times out of 10, which seems reasonable. But this metric

274 | Chapter 8: Designing Edge AI Applications

1 An even higher-level metric might involve store revenue, assuming that higher revenue is better—but that
metric is affected by more factors and so is a noisier way to measure the effectiveness of our system.

only tells us the raw performance of our algorithms; it doesn’t give us any insight
into whether our system is really helping. It’s also no use for comparing against the
current solution: it’s likely that a given employee can already tell with 100% accuracy
whether a shelf is empty or full without any help from AI!

Instead of focusing on technical metrics, try to take a step back and look at the bigger
picture. The real goal of our system is to make it easy for retail staff to guarantee that
the store’s shelves are always stocked, so that customers have enough products to buy.
With this in mind, we can choose a more meaningful metric. A better metric may be
the proportion of time that a given shelf is stocked with product.1 As a goal, we might
say that, on average, a given shelf should be stocked 90% of the time.

We can then measure our current system—the employees’ manual efforts—against
our goal. While it’s easy for employees to determine whether a given shelf is empty,
they may be extremely busy most of the day and not have time to check every
corner of the store to make sure every shelf is stocked. This might lead to an average
stocking rate of 70%.

We now know the baseline performance of our current solution (70%), plus our goal
(90%). This 20% shortfall is what our AI solution needs to help recover. Knowledge of
the current solution and the improvement that needs to be made can guide our prod‐
uct design and development process. For example, since we know that the problem
results from employees being too busy to check the whole store, we might focus our
design around making sure they are notified of empty shelves in a way that fits neatly
into their other duties. Since we have a convenient metric for measuring success,
we can deploy an initial system on some shelves and easily understand whether it is
effective.

There’s always the possibility that the insight provided by metrics helps us revisit
our assumptions and decide to solve the problem in a different way, perhaps not
including AI at all. For instance, maybe it ends up being cheaper to modify staffing
schedules to solve the problem rather than implement an edge AI system in every
store. Even though this is a nontechnological solution, it’s still a victory for the
evaluation-first approach to development.

It’s important to remember that “you are what you measure”—meaning that the
metrics you use to quantify your goals will have a huge influence on the direction you
end up taking. If you measure the wrong thing, you’ll end up wasting time, money,
and opportunity—and perhaps even make the situation worse. If you can identify the
right thing to measure and improve, the power of iterative development means you
can have an extraordinary impact.

Product and Experience Design | 275

Upgrading an Existing Edge Solution
In some cases, you might wish to improve an existing edge deployment by incorpo‐
rating more sophisticated artificial intelligence. For example, you may have a system
based on a simple heuristic algorithm that works acceptably but still has room for
improvement.

This is actually an ideal situation. Since you already have a working system deployed,
you presumably have a great understanding of the domain and the unique challenges
of the problem you are trying to solve. You also likely have some effective metrics for
measuring success: otherwise, you wouldn’t know that you need to improve. There’s
also the potential benefit of already having devices out in the field with which to
collect data.

To upgrade an existing system, you should follow roughly the same design process as
if you were starting any other brownfield project (i.e., one where you are making use
of existing hardware). At certain points, however, you’ll find that you can reuse your
prior work.

Throughout the development process, you should continually measure your new
system against the original and make sure it is on track to beat the old approach by
a comfortable margin. If a simpler solution works nearly as well, it may be better
just to stick with that rather than commit to the additional complexity and long-term
support required by an AI solution.

Technical goals
While systemic goals are vital in ensuring you are building the right thing, the tech‐
nological aspects of your system need to have their own set of goals. Understanding
the current and target performance of an AI algorithm, for example, will help you
direct development efforts to the appropriate area.

For example, imagine you are developing a keyword-spotting model for a smart
home device. For keyword-spotting models, performance is often expressed as a
combination of false accept rate and false reject rate: two numbers that together
describe how likely the model is to make a mistake. To ensure a quality product, you
may decide with your stakeholders and interaction designers to aim for a false accept
rate of less than 5% and a false reject rate of less than 1%. These numbers will become
your target.

The next task is to determine a mechanism for testing your work. Having a solid tar‐
get provides no benefit unless you are able to measure your progress toward it. Often,
testing relies on a test dataset—but there are always differences between performance
on a test dataset, typically collected under ideal conditions, and real-world operation.

276 | Chapter 8: Designing Edge AI Applications

The most reliable metrics come from systems that are deployed in production. At this
stage, it’s valuable to determine which metrics will be available to you in the field. It
can often be challenging to measure real-world performance, since real-world data
doesn’t tend to come with labels. If you struggle to determine how your application’s
performance can be measured in the field, it might be worth reconsidering your
project: without metrics, you’ll have no way of knowing if it even works.

You may be using AI to improve an existing system, and in some cases you might
already have some evaluation metrics that have been used to measure the current
system. In either case, it’s a great idea to use the same metrics to evaluate your current
system along with the proposed AI-enabled replacement. It’s always helpful to have a
yardstick to measure against.

Given the iterative nature of AI development, you should also consider the amount
of time you have available. Your goal should be to increase the system’s performance
until you meet the minimum viable performance level that you have decided on. If
progress stalls, you’ll need to decide whether to try a different approach—or to abort
the project entirely. It might make sense to come up with performance milestones
along the way to your target, so you can keep track of your progress and feel
confident that the project is progressing.

Values-based design goals
To build a responsible application, you need to create design goals that represent the
values you wish your solution to embody. For example, imagine you are building a
medical diagnostics system. Medical experts may agree that it would be irresponsible
to ship a solution with a diagnostic accuracy that falls below a certain threshold.

You should therefore aim to determine—in agreement with stakeholders and domain
experts—the minimum performance that is required for a responsible product. You
can use this minimum performance to come up with a set of firm go/no-go criteria
that can be used to gate the project’s release.

There’s not always agreement on values, which is why it’s so important to work
with a diverse and representative group of stakeholders. Since different groups of
people often share different values, the values you agree on may be relevant only in
a particular context—for example, the culture that a majority of your stakeholders
belong to. If you can’t agree on the appropriate values, it may be a sign that your
project carries ethical risk.

During the development workflow, it’s crucial to measure and document the metrics
that describe the system’s performance. This data will help you make a go/no-go
decision. There’s often significant organizational and interpersonal pressure to push
projects through to completion. Documenting metrics and having firm, written crite‐
ria for quality allow you to take the decision off your own shoulders and make it a
part of the organization’s processes.

Product and Experience Design | 277

These criteria should extend to deployment in the field. It’s vital to be able to monitor
performance and potentially terminate a deployment if the system is not performing
adequately in the real world. Since the metrics available in the field are often more
limited than those available during development, monitoring can be a challenge.
There’ll be more on this topic in Chapter 10.

Goals for Long-Term Support

Another key part of your design process is your plan for long-term
support. Most AI deployments require observation and mainte‐
nance once deployed in the field. Drift is inevitable and will lead
to a reduction in performance over time. The application and
hardware you choose should ideally have the ability to report back
some metrics that help you understand the rate at which drift is
occurring.
This insight will help you tell when you need to collect more data
and train a new model. Your design goals should include your goals
for supporting the product in the long term. There’s much more on
this topic in Chapter 10.

Architectural Design
The architecture of an edge AI system is the way that its component parts fit together
in order to create an effective solution. There are many possible ways to architect
any given system. Each architecture will have its own unique trade-offs. The task of a
systems architect is to analyze a situation and pick the architecture that will maximize
the benefits of the technology.

The next section of this chapter will lay out the fundamentals of systems architecture
for edge AI applications. Software and hardware architecture is a broad topic, so we’ll
focus specifically on the parts that are relevant to edge AI. We’ll establish a solid
foundation and provide a set of design patterns that can be applied in order to solve
many different problems.

Hardware, Software, and Services
Edge AI applications are made from three main components: hardware, software, and
services.

Hardware includes the edge devices themselves, with their processors, memory, and
sensors—the great diversity of which we encountered back in Chapter 3. It also
includes the way the devices are powered, and their means of communication with
the wider world.

278 | Chapter 8: Designing Edge AI Applications

Software is the magic that brings a system to life. It begins with the low-level
drivers that allow software to interface with the hardware itself, including sensors,
peripherals, and networking devices. It encompasses all the signal processing and
AI algorithms that may run on a device. Most importantly, it includes all of the
application logic that interprets the signals output by AI algorithms and determines
how to act upon them.

Services are the external systems that an edge AI system can interface. They might
include communications networks, wireless systems, IoT management platforms,
web APIs, and cloud applications: anything that lives externally to the edge system
and communicates via some channel. This could be your own infrastructure, or it
might be provided by a third party.

Effective edge AI architecture involves taking these three components and combining
them in creative ways that provide the optimal balance of trade-offs for a given
situation. It requires a solid understanding of the problem, the constraints, and the
domain. This is why it’s important to conduct a thorough exploration of the entire
problem before embarking on this stage of the design process.

Your understanding of a situation will inform your use of hardware, software, and
services. For example, a setting with minimal connectivity may force you to focus
on highly capable hardware and do without some of the benefits of services. A
tightly constrained brownfield (see “Greenfield and Brownfield Projects” on page
26) hardware platform might encourage you to be more creative with your use of
software. The need for sophisticated software and large models might result in a
significant role for cloud AI services in your particular application.

Some important concepts in edge AI architecture that we have already encountered
include heterogeneous compute (see “Heterogeneous Compute” on page 75) and
multi-device architectures (see “Multi-Device Architectures” on page 82). These are
the key ingredients for some of the most common architectures we’ll encounter.

Basic Application Architectures
Simplicity is always a good choice, and you should always start with the least complex
architecture you can get away with. Figure 8-1 shows the structure of a typical edge
AI application.

The core of the architecture is the application loop. This is a series of repeating steps
that capture and process signals, run AI algorithms, interpret their output, and use
the results to make decisions and trigger actions. It’s a loop because the steps run over
and over again as the device ingests a constant stream of sensor data.

Architectural Design | 279

2 Whether the system uses a firmware or an operating system depends on the hardware and the application, as
discussed in “Processors for Edge AI” on page 68.

Figure 8-1. Architecture of an edge AI application

The application loop is supported by the device "rmware or OS section.2 These
components provide a layer of abstraction between the hardware and the software.
They typically provide convenient APIs that the application loop can use to control
the hardware. Typical tasks involve reading data from sensors, sending and receiving
communications, and controlling attached devices (such as lights, speakers, and
actuators).

As we saw in “Heterogeneous Compute” on page 75, many devices have multiple
processors. In our diagram, the Hardware APIs block represents the abstraction layer
that allows computation to be performed in the processor of choice. For example, a
deep learning model’s operations may be computed on a separate neural network core
for increased speed and efficiency.

280 | Chapter 8: Designing Edge AI Applications

Before we move on, it may also be helpful to flip back to “Edge AI
Hardware Architecture” on page 68 for a reminder of the way that
edge AI hardware is structured.

Basic #ow
In the most basic applications, there’s a single pipeline of software, all running on
one device, that takes sensor data, processes it, and makes decisions. This is shown in
Figure 8-2.

Figure 8-2. #e basic edge AI application %ow

Many successful applications use this flow, and it should be your starting point when
developing a software architecture. Often, the AI algorithm in the flow is a single
machine learning model. For example, a smart security camera might use this flow—
with a vision model trained to detect people—as a trigger to send an alert. Figure 8-3
shows the same diagram with the real-world steps overlaid.

Figure 8-3. #e basic %ow applied to a smart camera design

Ensemble #ow
Another common approach is to use an ensemble of algorithms or models, as
described in “Combining algorithms” on page 113. In that case, the same sensor data
is fed into multiple models that produce the same type of output, and their results are
combined. It may look something like Figure 8-4.

Architectural Design | 281

Figure 8-4. An ensemble %ow

In an ensemble, the algorithms usually all produce the same type of output. For
example, you might create an ensemble of three different types of image classifiers
that are each trained to predict whether a person is present in an image. By com‐
bining the outputs of three different types of algorithms, you average the benefits
and drawbacks of each, hopefully leading to an output that is less biased than any
individual algorithm would be.

Parallel #ow
It’s also possible to combine algorithms that perform different functions. For exam‐
ple, you might combine a classification model with an anomaly detection model. The
output of the anomaly detection model is used by the application to understand when
the input data is out of distribution and therefore the classifier cannot be trusted.

Figure 8-5. A parallel %ow

282 | Chapter 8: Designing Edge AI Applications

In a parallel flow (Figure 8-5), the models’ output may be combined either in the
postprocessing step or in the business logic. For example, if the output of one model
is used to moderate the output of another model (like in our classification and
anomaly detection example) this moderation may be done in the postprocessing step.
If the output of multiple models is used to drive a business logic decision, the models’
outputs will be brought together there.

Parallel models doesn’t necessarily mean parallel processing (as in multitasking).
Many embedded processors are not capable of more than a single thread of computa‐
tion, so you may increase the overall latency and energy use of your application with
every model you add to the pipeline.

Series #ow
It can also be useful to run models in series. In this flow, as shown in Figure 8-6, the
output of one algorithm is fed into another, with or without postprocessing.

Figure 8-6. A series %ow

Series flows are handy when you want to use one model to extract features from a raw
input, then use another model to understand changes in the features. For example,
you might use a pose estimation model to identify the position of a person’s arms
and legs from a photograph, then pass these positions into a classification model to
determine which yoga pose they are doing.

Cascading #ow
Another clever way to use algorithms in series is within a cascade. A cascading flow is
shown in Figure 8-7.

Architectural Design | 283

Figure 8-7. A cascading %ow

Cascading flows are designed to minimize the cost of running inference in both
latency and energy use. For example, imagine an always-on keyword-spotting system
in a battery-powered device. The model required for keyword spotting might be
relatively large and complex, meaning that running it all the time would quickly drain
the battery.

Instead, we can run a smaller, simpler model designed merely to detect speech. This
is the first layer of our cascade. When speech is detected, the input is passed to the
second layer of the cascade, which is the full keyword-spotting model. Since the full
keyword-spotting model ends up being run less often, energy is saved.

A cascade can have as many layers as necessary. Depending on the application, each
layer in the cascade may also have its own independent signal processing algorithm.
In some cases, reaching a certain stage of a cascade may even trigger the capture of
data from another source—for example, a higher-quality microphone that provides
better signal but uses more energy.

It often makes sense to tune the earlier models in the cascade for high recall (see
“Precision and recall” on page 324), meaning it will err on the optimistic side when
deciding whether something is a potential match. This configuration will still save
energy versus a single large model, but it’ll reduce the risk of the less accurate earlier
models throwing away valid inputs.

284 | Chapter 8: Designing Edge AI Applications

Duty Cycle
The duty cycle is the percentage of time that a processor is actively working. When
not actively working, it can be placed in a low-power state, saving energy. Cascades
save energy because they allow for a reduced duty cycle.

This works because a smaller model takes less time to run than a larger one. Since the
model only needs to be run periodically (for example, whenever the buffer of sensor
data becomes full), the processor can be switched off for the rest of the time. In a
cascade, the smallest model is the model run most frequently. This results in a lower
duty cycle than if the larger model were being run at the same rate.

There’s more about duty cycles in “Duty cycle” on page 333.

Sensor fusion #ow
All of the architectures we’ve seen so far work with a single input. In a sensor fusion
flow, as shown in Figure 8-8, inputs from multiple sensors are fed into the same AI
algorithm.

Figure 8-8. A sensor fusion %ow

If different types of sensors are used, each sensor typically requires its own form of
signal processing to create features for the AI algorithm to use. That said, there are
also ways to perform sensor fusion with pure signal processing.

A classic example of sensor fusion is in sleep monitoring wearables, where signals
from heart rate, temperature, and motion sensors are fused in order to accurately
predict the user’s sleep stage. Sensor fusion can also be combined with any of the
other flows we’ve seen in this chapter.

Architectural Design | 285

Combining Rule-Based and ML Algorithms
All of these flows can be used to combine both rule-based and machine learning
algorithms. For example, you might use a deterministic rule-based system designed
by a domain expert to handle some percentage of decisions, with everything else
being passed to a machine learning model. This combines the explainability benefits
of rule-based systems with the ability of ML models to handle corner cases that aren’t
described by the rules.

Complex Application Architectures and Design Patterns
Basic application architectures can be combined with variations in hardware architec‐
ture in order to produce more complex systems that provide valuable benefits. These
tried and true design patterns can be applied to many different projects.

Heterogeneous cascade
In a heterogeneous hardware architecture (see “Heterogeneous Compute” on page
75), multiple processors or coprocessors are available within a single device. For
example, a single device may feature both an energy efficient midrange MCU, plus a
more capable but higher-power high-end MCU.

This type of hardware can be combined with software written in a cascading flow
(Figure 8-9) in order to implement a heterogeneous cascade. The earlier layers of
the cascade run on the lower-end processor, amplifying the savings in energy. The
latter layers, involving more complex algorithms, run on the higher-end processor. At
any given moment, only a single processor is powered up and consuming significant
energy.

Heterogeneous hardware increasingly includes accelerators designed to run deep
learning models efficiently. These can be a great fit for running stages of cascades.
This approach is used in a lot of keyword-spotting applications.

286 | Chapter 8: Designing Edge AI Applications

Figure 8-9. Heterogeneous cascade

Multi-device cascade
There’s nothing to stop a cascade from spanning multiple devices, as shown in
Figure 8-10. For example, a smart sensor may inspect data with a simple machine
learning model. If a certain state is detected, it might wake up a more powerful
gateway device that can analyze the data more thoroughly.

Figure 8-10. Multi-device cascade

Architectural Design | 287

The second-stage device can either use data transmitted by the first or capture new
data with its own sensors. The devices might be physically distinct, like a smart sensor
and a gateway device. They may also be combined as separate PCBs within the same
physical product.

In some cases, entirely separate products may be arranged in a cascade. For example,
a cheap off-the-shelf camera trap (which snaps a photo after detecting motion using
an infrared sensor) can act as the first stage of a cascade, subsequently waking up a
powerful SoC that is attached to the same storage device and can choose whether to
keep or delete the photo depending on its contents.

Cascade to the cloud
Where bandwidth is less of an issue, cascades can span both a device and the cloud.
This is a typical pattern in smart speakers that feature digital assistants, which use an
always-on keyword-spotting model to detect keywords on-device with as low latency
as possible. Once a keyword is detected, they stream the subsequent audio directly to
the cloud, where a large and sophisticated model (too big to be deployed to the edge
device) transcribes and interprets the user’s speech.

In Figure 8-11, a sophisticated four-stage cascade is shown that makes use of multiple
on-device models along with cloud compute. It may sound complicated, but this is
similar to the flow used by modern mobile phones.

The first three stages occur on-device, across two different processors: a low-power
always-on processor and a deep learning accelerator. When speech is detected by a
model running on the low-power processor, a more powerful processor is woken up
and used to look for the keyword. If the keyword is detected, an on-device transcrip‐
tion model attempts to turn the subsequent audio into text. Once transcribed, the
text is sent to the cloud, where a large natural language processing model is used to
determine what it means and how to respond.

The big trade-offs here are in energy, bandwidth, and privacy—as well as the need to
provide long-term maintenance of a cloud system. In exchange, we get to use models
that are too big to fit on-device, or that we don’t want to deploy locally for security
reasons. It’s important to make sure these payoffs are worth it, since as a trade we’re
giving up most of the benefits of edge AI.

288 | Chapter 8: Designing Edge AI Applications

Figure 8-11. Cascade to the cloud for keyword spotting

Intelligent gateway
Sometimes it may make sense for the AI logic to live near the edge—but not at the
actual leaf nodes of the network. For example, a network of IoT sensors may collect
many different types of data about the operation of a factory. No single sensor has
access to all the data—but they all send it back to a gateway device.

By running edge AI algorithms on the gateway device, all of the data can be analyzed
together, which may result in more insight into the operation of the overall system.
By doing the processing at the gateway, the sensors can remain small, cheap, and
power efficient. All they need to do is capture and forward data; the gateway can take
care of the intelligence.

Architectural Design | 289

Human-in-the-loop
In some contexts, it’s not necessarily safe to allow AI algorithms to make decisions
unchecked. This is typically where the risk of a bad decision could be extremely
serious. Here are a few stark examples:

• Medical applications, where an incorrect diagnosis or badly administered proce‐•
dure could endanger life

• Large machinery, such as self-driving cars or factory equipment, that has the•
potential to harm

• Security and defense applications, where deliberate harm may result•

There are also many more subtle examples. For instance, if AI is used to enforce
the rules of a sport—maybe analyzing video footage to detect foul actions—bias in a
model might lead to unfair treatment of participants.

These types of challenges mean that it’s often necessary to design a system to operate
with human oversight. This can be implemented in different ways. In one model of
human-in-the-loop architecture, a human is directly involved with every decision.
For example, a medical diagnosis device might indicate that a patient has a certain
condition, but a doctor is still required to interpret the information and make the
final call using their own judgment.

In another model, the human acts as a passive observer unless they see fit to inter‐
vene. For example, while a self-driving car may be free to move by itself, its driver
is still required to pay attention to the road and be ready to take over driving at
a moment’s notice. In this case, the self-driving car typically uses AI systems to
detect when the driver is not paying attention to prevent them from forgoing their
obligation. It’s worth noting that there’s significant debate around whether this model
is effective. Humans tend to lose focus if they don’t need to interact, which may
compromise their ability to intervene.

In the third model, there is no direct human supervision—but samples of the algo‐
rithmic decisions are sent to human auditors for inspection. The overall process is
monitored for reliability, but nobody is able to intervene live during a given activity.
This approach is important in the long-term monitoring of applications and will be
covered further in Chapter 10.

290 | Chapter 8: Designing Edge AI Applications

Graceful Degradation
Under production operation, there may be reasons why you wish to “turn off ” any
machine learning components of a system. For example, it may be discovered that an
ML model is no longer performing effectively and can no longer be used (there’ll be
more on this topic in “Performance degradation” on page 353).

Whatever your architecture, it’s important to build in some fallback that ensures the
behavior of your entire system is still acceptable if you are forced to turn the ML
component off.

In practical terms, this means including configurable conditional logic in your appli‐
cation that describes whether ML is used or bypassed for various scenarios with
respect to the input. This could take the form of a “deny list,” which indicates types of
inputs that cause ML to be skipped. For example, each step in a cascade model might
be guarded by an if statement like the following:

if matches_something_in_deny_list(input):
 return non_ml(input)
else:
 return ml(input)

Ideally, it’s possible to update these deny lists on the fly—perhaps via a configuration
update sent over the network. If the nature of your edge application doesn’t allow
for this type of remote update, you might at least be able to build in the ability to
change configuration via hardware (for example, by switching a switch or connecting
a jumper).

You will need to evaluate the performance of your product without the ML parts, so
that you understand the impact that switching them off will have.

Working with Design Patterns
We’ve now encountered a wide range of design patterns that should provide some
great starting points for your own projects. Of course, real-world situations do not
always map neatly onto textbook patterns. Don’t be afraid to adjust these ideas to fit
the needs of your individual situation.

As we’ve learned, the edge AI workflow is innately an iterative one. It’s helpful to take
an iterative approach to using design patterns, too. Here’s a step-by-step workflow
you can follow:

1. Make sure you’ve spent some time exploring your dataset and understanding the1.
types of algorithms you may need to use.

2. Begin with the simplest design pattern that you can: this will usually be Fig‐2.
ure 8-2, especially if you are working on a single device.

Architectural Design | 291

3. Try to map your problem onto this pattern; write up some documents to describe3.
it, including diagrams, and list the pros and cons.

4. Begin iterating through the development process, keeping the chosen design4.
pattern in mind.

5. If it looks like you might need something more sophisticated, jump to the next5.
simplest pattern that you can get away with.

6. Continue iterating and adjusting until you’ve reached something that works.6.

Don’t be tempted to begin with a more complex design pattern than you know you
need. The extra complexity will be a drag on your development process and will
create additional constraints that force you down a certain path. All of this creates
risk, and the number one way to be successful in AI projects is to keep risk to a
minimum.

Accounting for Choices in Design
The designs we come up with in response to a particular problem are shaped by
our individual perceptions, which means they may subtly encode our own (or our
teams') biases. In addition, architectures themselves have innate bias. An architecture
represents a set of compromises that direct the results of a solution one way or
another. It’s not necessarily intentional; it’s what happens when we pick one particular
option out of many.

There are three main categories of bias that have their roots in the design process
(versus coming from the dataset). They are as follows:

Product bias
A product represents a particular solution to a problem. By its nature, it rep‐
resents an opinion on the way a problem should be solved. It embodies the
limitations and trade-offs that come with that opinion. All of this is unavoidable,
but it’s important we acknowledge that it results in bias.

For example, imagine we are building a smart home thermostat that can predict
the perfect moment to adjust temperature levels based on user activity. We might
need to choose between a basic architecture, with a single device that contains
high-resolution sensors and a powerful processor, or an intelligent gateway archi‐
tecture, where cheap, low-resolution remote sensors are installed in each room
and communicate wirelessly with a central hub that performs the processing.

These trade-offs direct our product toward a preferred solution. With limited
visibility but superior sensors, the system consisting of a single device is likely to
work better in open-plan houses or small apartments. The system with remote
sensors may work better in houses that have many different rooms.

292 | Chapter 8: Designing Edge AI Applications

3 See Wei Lu et al., “SSD: Single Shot MultiBox Detector”, arXiv, 2016.
4 See Louis Moreau and Mat Kelcey, “Announcing FOMO (Faster Objects, More Objects)”, Edge Impulse blog,

March 28, 2022.

Since every product design is created for a specific purpose, it’s important to pick
the design that best fits the problem you are trying to solve. If you’re designing
a smart home product, you may need to conduct some research to understand
the styles of homes your target customers live in. This can inform your design
process and help you select the appropriate architecture.

Algorithm bias
Algorithms themselves have innate bias. As with architectures, the design of
every AI algorithm embodies a specific solution to a broad problem. Mathemati‐
cians and computer scientists try hard to find algorithms that work generally,
across many different types of input, but in reality each type of algorithm has
underlying assumptions that fit some problems better than others.

For example, we might be attempting to design an agricultural product that uses
object detection to count animals on a farm. There are many different styles
of object detection algorithm available to choose from. One such style is the
single-shot detector (SSD),3 which uses a deep learning model to predict precise
bounding boxes around the items of interest. Another style is Faster Objects,
More Objects (FOMO),4 which uses a simpler, faster approach that identifies the
centers of objects but does not draw a bounding box.

An effective product could be built with either algorithm. That said, different
algorithms make different choices, and these will be noticeable in the product’s
performance. For example, due to the way their loss function is constructed,
SSD models are better at identifying larger objects than smaller objects. In pro‐
duction, this might result in a product that works better when placed in smaller
fields, where the animals are closer and take up more of the image frame. In
contrast, FOMO is most effective when the centers of objects are not too close
together. This means it may work best when animals are more spread out.

As with product bias, it’s important that algorithms are chosen with the eventual
deployment in mind. If the product will be marketed for counting sheep in large
fields, FOMO may be the right choice. If it will be marketed for counting cows in
a shed, SSD could be a better option. In either case, you should make sure your
product is tested thoroughly before it goes on sale.

Your dataset will also inform your decisions here. As we’ve seen, it’s very impor‐
tant to make sure your dataset is representative of real-world conditions. If your
dataset adequately represents what your product will see “in the field,” you won’t

Accounting for Choices in Design | 293

https://oreil.ly/ZU6-S
https://oreil.ly/NdEG-

be surprised by algorithm bias. If your dataset is not representative, the bias will
be undetectable and you may find that your system underperforms.

An interesting way to mitigate algorithm bias is through the use of ensembles,
as described in “Combining algorithms” on page 113. Using an ensemble of
different algorithms will smooth out the extremes, giving you the closest thing
to an ideal approach. Ensembles often win machine learning contests, where
high performance on an unseen dataset is the goal. That said, this doesn’t mean
ensembles are immune to bias. Plus, since they involve running multiple algo‐
rithms, they can be prohibitively costly on edge devices.

Deployment bias
This type of bias happens when a system is deployed in a way that it was
not designed for. A product that is created to solve a particular problem has
no guarantees of being effective when deployed in different contexts. It doesn’t
matter how carefully the developers have worked to mitigate bias; when applied
to a different scenario from the one it was designed for, all bets are off.

For example, consider a medical device that is designed to monitor a patient’s
biosignals and predict the likelihood of a specific health condition occurring.
The device has been carefully designed so that its inherent trade-offs match up
well with the health condition it is designed to predict. The algorithms it uses
have been evaluated and selected based on a high-quality, representative dataset
collected from patients with the same condition.

This device may work very well on patients with the condition it is designed for.
However, what if a doctor attempts to use it to predict a related condition that
presents in a similar manner but differs in some subtle ways?

Since the product was designed around the original condition, there’s no way of
knowing how it will work on the new one without extensive testing with a lot
of new data. Even if it appears to work for some patients, there may be others
for whom it fails silently, putting their lives at risk. The bias of the doctor, in
assuming that the conditions are similar enough for the product to continue to
work, is reflected in the outcomes: the health of patients may be placed at risk.

To minimize deployment bias, it’s important that the users of your product
understand its design limitations and are responsible enough to avoid misusing
it. In life-or-death situations, such as with medical devices, some of this may even
be legislated: a device may be approved for legal use with a specific condition and
no others, and only by licensed medical professionals.

There are huge benefits to publishing public information about the functioning
of your product. For example, you may choose to share key facts about the
dataset used to create the product, or statistics about the performance of your
product in various scenarios. This way, your users can understand the exact

294 | Chapter 8: Designing Edge AI Applications

5 As covered in “Why Business Is Booming for Military AI Startups”, by Melissa Heikkilä, MIT Technology
Review, July 7, 2022.

nature and limitations of your product and will be less likely to mistakenly
deploy it in the wrong setting.

There are some products that are so easy to deploy inappropriately that they are
best left on the drawing board. For example, the Russian invasion of Ukraine
in 2022 has led to some commentators calling for more development of autono‐
mous weapons systems.5 However, the unavoidable potential for misuse both on
and off the battlefield—either by governments or by terrorist groups—has led
many AI practitioners to pledge not to work on lethal AI. You can take this
pledge yourself at stopkillerrobots.org.

Design Deliverables
It’s helpful to think of the design process in terms of the artifacts that result from
it. The following three sidebars lay out the most common notes and documents that
relate to the initial, exploratory part of the design process.

We begin the process by understanding our problem and coming up with some
potential solutions.

Problem and Solutions
• Problem description (see “Describing a Problem” on page 172)•
• BLERP analysis (see “Do I Need to Deploy to the Edge?” on page 173)•
• Minimum viable product ideas (see “Scoping a Solution” on page 271)•

Our next step is to determine the type of solution that is feasible.

Exploring Feasibility
• Moral feasibility study (see “Moral Feasibility” on page 187)•
• Business feasibility study (see “Business Feasibility” on page 189)•
• Dataset feasibility study (see “Dataset Feasibility” on page 191)•
• Technological feasibility study (see “Technological Feasibility” on page 192)•

Once we have a solution we think is feasible, we can start creating the design.

Accounting for Choices in Design | 295

https://oreil.ly/RekGr
https://oreil.ly/fMIPF

Design and Planning
• Design goals and standards (see “Setting Design Goals” on page 274)•
• Description of time and resource constraints (see “Planning an Edge AI Project”•

on page 197)
• Proposed application flow (see “Architectural Design” on page 278)•
• Proposed hardware architecture (see “Edge AI Hardware Architecture” on page•

68)
• Proposed software architecture (see “Architectural Design” on page 278)•
• Long-term support plan (see “Setting Design Goals” on page 274)•
• Analysis of design choices (see “Accounting for Choices in Design” on page 292)•

Summary
Since the design and development process is iterative throughout the course of a
project, these should all be considered living documents—you can create new, upda‐
ted versions of them as you proceed.

Once you have early versions of all these materials together, you can conduct a review
and make sure the product still seems feasible and within acceptable thresholds for
risk. If things look good, it’s time to get started with active development.

296 | Chapter 8: Designing Edge AI Applications

CHAPTER 9

Developing Edge AI Applications

Developing an edge AI application is a big task. In this chapter, we’ll get familiar with
the iterative development model that helps deliver successful edge AI deployments in
real-world projects.

An Iterative Work#ow for Edge AI Development
The process of developing a successful application is fundamentally simple: start
small, make incremental changes, measure your progress, and quit when you meet
your goals. The complexity comes when you introduce the vast number of moving
parts that make up the technology of edge AI. This section of the book aims to
provide a concrete process you can walk through to maximize your chances of
success.

As we heard back in “The Edge AI Workflow” on page 169, the core idea behind
this workflow is the power of feedback loops. Our goal is to create feedback loops
between the various stages of the process, leading to an ever-improving understand‐
ing of the problem, our solution, and the best ways to fit them together (as shown in
Figure 9-1).

While it’s an iterative process, some parts are more iterative than others. The steps
we tackle earliest—exploration, goal setting, and bootstrapping—are the parts where
we’re figuring what we want to do and how we may be able to go about doing it.
They feature first in up-front planning and then during periodic reappraisal, as new
information comes in: perhaps after an initial deployment, or when a significant
amount of new data has come to light.

297

Figure 9-1. Feedback loops are central to the edge AI work%ow, "rst introduced in “#e
Edge AI Work%ow” on page 169

The middle parts of the workflow, in the test and iterate section, are more radically
iterative. They’re part of a tight spiral of development, testing, and improvement that
is intended to home in toward whatever goals you have set. You can think of them
more as four parallel tracks of development that inform one another as they evolve
toward satisfying your requirements.

The deploy and support sections are also iterative, but again at a slower pace than the
core section. This is part of their nature: once deployed and in the hands of users, the
development of a system is destined to slow down. However, this is the stage at which
the most vital feedback will start to arrive, and where your system will have to begin
adapting to the evolving environment of the real world. The earlier you can deploy
and tap into this vein of insight, the better.

The next section of the chapter will walk through each topic in the workflow and lay
out some of the key activities and concepts.

Exploration
Exploration is the way we begin to understand what we are trying to do. It includes
much of the type of work we learned about in Chapter 6 and consists of the following
major tasks:

• Describing the problem you are trying to solve (see “Describing a Problem” on•
page 172)

• Determining whether you need edge AI (see “Do I Need to Deploy to the Edge?”•
on page 173 and “Do I Need Machine Learning?” on page 178)

• Figuring out whether the project is feasible (see “Determining Feasibility” on•
page 186)

298 | Chapter 9: Developing Edge AI Applications

• Framing a problem, by mapping it onto known methodologies (see “Framing•
problems” on page 195)

• Analyzing your proposed solution for potential risks, harms, and unintended•
consequences (see “Moral Feasibility” on page 187)

• Mapping out stakeholders and understanding what they want and need (see•
“Stakeholders” on page 128)

• Performing some initial data exploration•

The final step depends a lot on whether you have the means to collect a dataset at
this point, even if it’s a small and limited one. It’s strongly recommended that you
have some data on hand while attempting to determine feasibility: data represents so
much of the risk of an AI project that it’s critical to start understanding it as soon as
possible.

You should at the very least get a sense for how difficult it will be to collect an
adequate dataset. It’s likely to be one of your major challenges, and it’s disastrous to
invest a lot of work before discovering that data is impossible to obtain.

If you can’t begin to conduct data exploration at this stage, you should do so at the
earliest available opportunity.

Data Exploration
Data exploration, also known as exploratory data analysis (EDA), is the task of learn‐
ing about a dataset. In our context, we’re doing so with the goal of understanding
whether the dataset is likely to be helpful in solving our problem, whether as a way to
evaluate the performance of our algorithms or as a training dataset for use in machine
learning.

Data exploration commonly involves the following:

Statistical analysis
Using descriptive statistics to summarize the data’s properties

Dimensionality reduction
Transforming data so it is easier to analyze

Feature engineering
Extracting useful signals, as seen in “Feature Engineering” on page 85

Visualization
Generating graphics that represent the data’s structure

Modeling
Training machine learning models to explore relationships within data

An Iterative Work#ow for Edge AI Development | 299

1 A highly rated book that covers the topic is Data Science from Scratch: First Principles with Python by Joel Grus
(O’Reilly, 2019).

Data exploration is a large and fascinating field, the natural domain of data scientists
and machine learning practitioners. There are vast numbers of software tools avail‐
able for use in data exploration—but due to the complex concepts and terminology,
they can feel fairly inaccessible to users without some background in data science.

That said, it’s possible to learn some reasonable beginner-level skills in a small
amount of time from many resources available on the topic.1

One of the challenges of edge AI, however, is that much of the data we work with
is sensor data in the form of high-frequency time series and high-resolution images:
relative newcomers to the field of data science. Data exploration tools are often geared
toward tabular data, low-frequency time series, and textual data, such as corporate
financial data and social media posts. This means that it can be difficult to find tools
and resources that can help.

You may find that engineers with expertise in fields outside of traditional data science
have existing skills that can help with data exploration for edge AI. For example,
digital signal processing engineers have many tools that are valuable for exploring
sensor data, and natural scientists (such as biologists and physicists) often have strong
practical skills in this area.

Goal Setting
Goal setting is where we attempt to describe what we’re aiming for. We’ve seen
various goal-setting activities throughout Chapters 6 and 8.

The process includes these key components:

• Determining the evaluation metrics you will use, before and after deployment•
(see “Setting Design Goals” on page 274)

• Setting the systemic goals for your design (see “Systemic goals” on page 274)•
• Setting the technical goals for your implementation (see “Technical goals” on•

page 276)
• Agreeing on values with stakeholders (see “Stakeholders” on page 128)•
• Creating a values-based framework for interpreting progress (see “Values-based•

design goals” on page 277)
• Setting up a review board to evaluate the ongoing project (see “Diversity” on•

page 126)
• Designing a scheme for testing your algorithms and your application•

300 | Chapter 9: Developing Edge AI Applications

https://learning.oreilly.com/library/view/data-science-from/9781492041122/

• Scoping out your long-term support goals•
• Deciding how you will make the decision to abort a project•

Goals must be measurable to be meaningful, so many of these items depend on
having an effective process for testing and evaluating your system. This will be
covered in depth in Chapter 10.

Calling it quits
Edge AI is a risky business, and a large proportion of projects do not make it into
production. This is only natural, since a big part of the development process is
devoted to understanding whether it’s actually possible to solve the problem using the
resources that are available.

However, when we’re invested in a project—personally, financially, and organization‐
ally—it can be difficult to know when to quit. That’s why it’s so important to have a
solid idea of your minimum viable performance characteristics right at the start of
a project. You’ll need to decide these minimum standards for every type of goal: sys‐
temic, technical, and ethical. For example, it’s no good if you have a high-performing
algorithm (according to your technical metrics) if your system, once deployed, does
not have the business impact you were looking for.

Failure is a key part of the iterative process of discovery and innovation, especially
where artificial intelligence is concerned. The important thing is to identify when a
direction of development is not working out before too many resources have been
burned in its pursuit: fail early, fail fast. If you can identify an unproductive effort
early on, you can quickly change targets and avoid spending too much time.

For this reason, it’s crucial to set milestones and go/no-go criteria for your project.
At each stage during design and development, you should be prepared to measure
your current status and make a call as to whether the current approach is working
or whether it’s time to try something else. Writing these milestones down during the
early goal-setting phase is a good idea because it will force you to think critically
about the project early on. You can always reappraise your goals as you make
progress.

Some problems are simply intractable, especially when adequate data is hard to come
by. In these cases, you may have to make the difficult call to abort a project entirely.
To avoid being surprised by this, you should understand your budget in time and
money before you begin and come up with limits in terms of what you are willing to
spend to attain a certain amount of progress. If you don’t seem to be close enough,
you can make the decision to stop. It may be better to stop an unfruitful project
midway and go back to the drawing board rather than spend your entire budget and
end up with nothing.

An Iterative Work#ow for Edge AI Development | 301

Bootstrapping
Bootstrapping is how we get from an understanding of our problem to our first
iteration of a solution. It involves getting our hands dirty with data and starting the
process of building—topics we cover in Chapter 7 and in the chapter you are reading
now. The key tasks are:

• Collecting a minimal dataset (see “Estimating Data Requirements” on page 211)•
• Making an initial attempt at determining hardware requirements (see “Device•

capabilities and solution choice” on page 196)
• Developing the simplest possible initial algorithm•
• Building the simplest possible end-to-end application (see Figure 8-1)•
• Doing some initial real-world testing and evaluation (see Chapter 10)•
• Performing a responsible AI review of your early prototype•

We’ve encountered a couple of these concepts before, but this is the first time we’re
bringing together all of the components of an entire working application.

Why bootstrapping is helpful
The goal of bootstrapping is to quickly arrive at something that at least somewhat
resembles a prototype—even if it’s extremely limited, incomplete, and makes some
faulty assumptions. But why waste time on a low-quality prototype if you can just
develop the components separately and bring them together at the end?

There’s a huge difference between reasoning about something on paper and experi‐
encing a tangible piece of technology, especially when the technology is designed
to interact with the physical world. By rapidly getting to an end-to-end prototype,
you’ll give yourself, your team, and your stakeholders the opportunity to try it out,
understand the way it fits the problem you are trying to solve, and identify many
potential issues far ahead of time.

Iterative development is all about testing your assumptions: trying to quickly deter‐
mine whether a given decision is the right one so that you have time to course-correct
if it is not. You can (and must) do this with the individual components of a system,
but for something as complex as an edge AI product you really need to see it all
working together. There are emergent phenomena and feedback loops within any
complex system, and you can’t truly understand how something works until you have
seen it interact with the real world.

In addition to the massive benefits of early testing, there’s a huge amount of power
in being able to demo your product early on. Even before it’s ready, an end-to-end
demo can be highly convincing to stakeholders, potential customers, and to your own
team. This might be essential to unlocking the support and resourcing that you need

302 | Chapter 9: Developing Edge AI Applications

to complete the project. On the flip side, if you find that your early demos aren’t
convincing anybody, it’s a good signal that you might need to revisit your design.

You can’t always create an entire end-to-end flow at an early stage. That’s OK: you can
still benefit from integrating whichever components of the system that you can. That
said, if a project is by nature difficult to integrate until the very end, it carries a much
higher degree of risk.

Developing a baseline algorithm
In “Systemic goals” on page 274 we learned about the need to take an evaluation-
first approach, where the performance of our system is continually measured and
compared to a baseline. In many cases, there’s an existing non-AI system whose
performance we can measure and compare to. Either way, once we start developing
our algorithm we should aim to immediately establish a baseline for algorithmic
performance that we can try to beat.

To help illustrate this concept, let’s imagine we are building a system to help reduce
the time taken for quality inspections of chocolates being made on a production
line. Our grand idea is that we could train a deep learning vision model to identify
specific flaws in individual chocolates and provide real-time feedback to workers on
the production line.

The first thing to do is establish our current baseline for performance. It may be that
quality control is currently done manually by employees, and it takes 30 seconds per
box of chocolates. With our stakeholders, we may decide that our goal is to reduce the
time taken to at most 10 seconds.

Our first algorithm—and the hardware and software supporting it—should attempt
to make progress toward this goal in the simplest manner possible. For example,
rather than training a sophisticated deep learning model (which would require a large
dataset, costing time and money to collect) to identify many different types of faults,
perhaps we can use some simpler computer vision techniques (as in “Image feature
detection” on page 92) to spot the characteristics of a single type of fault.

This simpler algorithm will be much easier to implement as a basic prototype. We can
then try it out on the production line. For example, we might set up the system to
alert the employee working on quality control when a box of chocolates has a very
specific flaw. Although limited, this extra information might still make the employee’s
life easier and save a few seconds of time.

Now that we have an algorithmic baseline using a simple implementation, we know
what we have to beat. In some cases, the simple baseline may prove effective enough
that it changes our view on what is necessary. For example, if sufficient time is saved,
it may make sense to forgo the expense of collecting the large dataset necessary

An Iterative Work#ow for Edge AI Development | 303

to train a deep learning model: our stakeholders may be perfectly happy with the
performance of the simple baseline, or at least a more polished version of it.

The approach of establishing a simple baseline algorithm helps protect us from
overengineering, where we invest a lot of resources in developing a complex solution
to a problem that is not proven to be necessary. It also provides a solid start to our
evaluation-based approach, forcing us to set up the processes required to conduct
realistic evaluation and allowing us to measure the rate of improvement over the
existing system.

A baseline can also help inform the required architecture. For example, if the baseline
can handle a large percentage of inputs, the best overall solution may be a simple
algorithm that covers most inputs, combined with a cascade to a sophisticated ML
model that can handle more challenging inputs.

Our "rst hardware
Being able to evaluate our baseline algorithm often implies that we have also arrived
at an initial iteration of our hardware design. It should be the goal at this point to
create something deployable so that we can test it in the field. However, this doesn’t
mean it has to meet the same requirements as our finished product.

Computer hardware runs the spectrum from general purpose to application specific.
At one extreme, a modern personal computer is designed to be capable of running
nearly any software and integrating with any hardware you can imagine. At the other
end, a custom microcontroller-based board may be designed for a single function
inside a specific product.

The more general purpose and capable a piece of hardware, the easier it is to develop
for. This principle means that it’s often much quicker to prototype something on
a more powerful system, such as an SoC-based development board (see “System-on-
Chip” on page 75) running Linux, than on a tiny, low-power, application-specific
device that your team has designed in-house.

With this in mind, it’s often a good idea to implement the first iteration of your
product on a more general, capable piece of hardware—even if this compromises
some of your design goals. For example, it could be quite easy to implement the first
iteration of our chocolate quality control system on a Linux SoC board using some
quick and dirty Python scripts.

The board may be far more expensive and power hungry than we can afford in
our long-term solution, but for an initial prototype it still gets the job done—with a
fraction of the development time. Once the concept is proven out on more general
hardware, you’ll have enough confidence to invest in the lengthy and expensive
process of designing a smaller, more efficient device, and adapting your algorithms
to fit.

304 | Chapter 9: Developing Edge AI Applications

Data Logging
If you don’t already have a dataset (which is a majority of the time) you will have
to get some hardware into the field in order to collect a dataset. As described in
“The Unique Challenges of Capturing Data at the Edge” on page 217, this can be a
challenge. Your data collection hardware typically needs to have the same sensors as
your eventual final product, since substantial differences will make it hard to create
effective algorithms. Often the shape, size, and materials of the hardware device can
influence data collection, too.

If you’re unsure of the exact sensors you’ll be using, you can always use multiple
types during data collection so that you know you won’t have to throw away your
dataset and start again from scratch if you are required to make a hardware change.
For example, you could collect data using two types of microphone, giving you the
flexibility to choose either one in your final design.

Aside from the sensors (and any physical considerations that might affect their
readings), your data logging hardware can be a completely different type of device to
what you intend for your actual product.

Responsible AI review
Deploying and testing the first end-to-end prototype of our application allows us to
begin measuring performance, and also to better imagine how the finished version
might work in the field. It also requires us to do some initial algorithm development,
which often involves further understanding of our dataset and its limitations.

All this additional information that has come to light can help us test some of the
assumptions we made while determining moral feasibility (as in “Moral Feasibility”
on page 187) and stating our values-based design goals (see “Values-based design
goals” on page 277). You should take a systematic approach to probing all of these
assumptions using the results of your initial testing.

For example, in the case of our quality-control system for a chocolate factory, we may
have assumed that our system would reduce the burden on employees by allowing
them to get more done in the same amount of time. However, on exploring feedback
on our prototype system we may discover that the system increases employees’
stress by overloading them with information, leading to burnout. This discovery may
inform the design of our product: we might decide to explore ways we can inform
workers without creating an overwhelming experience.

With an evaluation-first approach, we’re able to gather key metrics about the perfor‐
mance of the system and analyze them in terms of our goals and values. For instance,
it’s very important from a fairness perspective that our system works well for all
employees. By evaluating metrics, we may find that the system performs better for

An Iterative Work#ow for Edge AI Development | 305

some employees than others (for example, perhaps it provides visual feedback that is
difficult for some people to see). In order to capture this type of insight, it’s important
to measure and collect relevant data from the beginning.

Test and Iterate
We’re now in the core part of the workflow, where our initial implementation is
incrementally improved over numerous iterations. There are four main areas of
focus: application, dataset, algorithms, and hardware. These are shown in Figure 9-2.

Figure 9-2. #e test and iterate portion of the work%ow consists of four focus areas:
application, dataset, algorithms, and hardware

Each of these things is an essential component of the project. You can think of them
as four siblings, growing up side by side, informing one another’s development as
they change in response to their environment. That environment is the evaluation-
driven feedback loop that it’s our job to deliberately create.

These four components advance together, each at their own pace, sometimes con‐
strained by the practicalities of the situation—and sometimes by each other. For
example, dataset collection can be a painstaking process and it might take a while
before the dataset is big enough to train a machine learning model to an acceptable
level of performance. During the waiting period, work on the physical hardware and
the application code may continue unabated.

306 | Chapter 9: Developing Edge AI Applications

Interdependency
You’ll notice early on that the dependencies between different components of the
project can seem to cause gridlock. For example: your algorithm depends on having
an adequate dataset, your hardware depends on the algorithm, and your application
depends on the hardware.

If things get blocked, you should attempt to work around the situation through
substitution. For example, you may choose to use a general-purpose hardware plat‐
form while you wait for your custom hardware to be ready (as we saw in “Our first
hardware” on page 304). Similarly, you might try to make do with a less data-intensive
algorithm if your dataset is causing a blockage.

From an engineering perspective, the riskiest components of a system are its algo‐
rithms. This is because it’s hard to know ahead of time what type of algorithms will
be required to solve a problem, and what their data and computational requirements
might be. For this reason, it’s always a good idea to design some flexibility into your
hardware and application. For example, you may want to ensure there’s additional
RAM or ROM available in case you end up needing a larger-than-expected machine
learning model to attain the accuracy you need.

There’s obviously a cost associated with building excess capacity, so as with any
engineering project, you’ll sometimes just have to make a judgment call based on
your best understanding of the situation.

The project’s components do not exist in any particular order or hierarchy, and devel‐
opment is not a round-robin process where work is performed on one component
and then the next. Instead, development occurs in parallel, typically with different
engineers—or entire teams—working on each thread. Teams must synchronize regu‐
larly to share their current progress and anticipate whether there are any impending
roadblocks that need to be worked around.

The key to successful development is to establish feedback loops between each of the
four threads, and between the stages of the project (development, deployment, and
support).

Feedback loops
The classic view of AI development, visualized in Figure 9-3, shows a simple, step-
by-step feedback loop that starts with data collection and ends with deployment to
device. This is a tempting idea since it provides an easily understandable view of the
way that information flows through the system.

An Iterative Work#ow for Edge AI Development | 307

Figure 9-3. It’s tempting to think of the AI development feedback loop as being a
step-by-step process, the result of taking a linear work%ow and making it iterative

However, as we learned in “The Edge AI Workflow” on page 169, the reality is that
there is actually interplay between every single component of the system. Each of
them relates to the others in a dynamic way that is not easily expressed in a basic
diagram. Figure 9-4 shows the system expressed more realistically.

Figure 9-4. In reality, AI development involves a network of components that feed back
into one another

When managing a project, it’s critical to enable feedback to flow throughout the
process unimpeded, from any one point to any other. For example, there will likely
be aspects of the dataset (for example, the energy contained within specific frequency
bands of the raw data) that inform the hardware design (since the hardware must be
capable at sampling at a high enough rate to represent that frequency). The inverse is
also true: if the hardware is constrained to include certain sensors, the dataset must
reflect what those sensors can capture.

Some feedback loops are easier to establish than others. For example, a feedback loop
between dataset and hardware can be created by having the responsible teams talk to
each other regularly. On the other hand, depending on the application, it can be very
expensive to deploy a device into the field and monitoring. For this reason, various
tools exist to “close the loop” in a simulated or approximate way—as we will discuss
in “Performance Calibration” on page 337.

308 | Chapter 9: Developing Edge AI Applications

Here are some of the most important feedback loops in the development process:

Algorithm and dataset
Algorithms have varying data requirements. If plentiful data is available, many
different algorithms may be used. If little data is available, fewer algorithms will
work well. If a certain algorithm is desired for its specific properties, a suitable
dataset will have to be collected.

Algorithm and hardware design
In a greenfield project, the algorithm selected may determine the choice of hard‐
ware, since certain hardware might be required to run the algorithm efficiently.
In a brownfield project, the constraints of existing hardware will limit the choice
of algorithm.

Algorithm and performance in the "eld
The selected algorithm will impact performance in the field—for example, a
larger machine learning model may provide better results. Inversely, the required
level of performance in the field may drive algorithm selection.

Dataset and hardware design
The hardware design often informs the dataset since it may dictate which sensors
are available for which to collect data. Alternatively, if a specific dataset is already
available, the type or origin of the data it represents may influence the hardware
design. For example, it may be helpful to ensure the exact same model of sensor
is used.

Dataset and performance in the "eld
If real-world performance is bad, it may be necessary to collect more data, guided
by the areas in which the system is falling short. If only limited data is available, it
may force you to settle for lower real-world performance than otherwise.

Inversely, if performance in the field is limited or biased, this will influence
the data you collect and the models you train over time. For example, if most
people using your product belong to a certain group, you may begin to overfit
performance to their needs.

Iterations in practice
The basic idea of an iteration is that you change something, measure its impact on
your goals, and then decide what to do next. The canonical example of this technique
in AI development is when training a machine learning model. A typical iterative
process for training resembles the following:

An Iterative Work#ow for Edge AI Development | 309

2 By aiming to overfit the data, we can prove that the model has sufficient representative power to model the
data, and that our training pipeline actually works.

1. Obtain some data and split it into training, validation, and test datasets.1.
2. Train a large model on the training split, aiming to overfit the data.22.
3. Measure performance on the validation split.3.
4. Tweak the setup to improve validation performance: add more data, add regulari‐4.

zation, or play with the type and size of the model.
5. Train and measure performance again.5.
6. Once the model performs well enough on the validation split, try it on the test6.

split.
7. If it works well, great. If it doesn’t work well, throw it out and start from scratch.7.

The flow for an edge AI project is similar, but it also includes the hardware and
application pieces of the puzzle. For example, you might come up with an effective
algorithm using something similar to the above flow, then attempt to deploy it to
your hardware of choice and test it in a realistic way (such as with potential users). If
it works, great. If it doesn’t work, you’ll have to make changes.

The key to all of this is making sure you test and iterate rapidly. If you spend a long
time on each iteration, the penalty for making a regression (where improvement gets
worse or something doesn’t fit, as with a model that is too large for the available
hardware) is much larger, since you may have wasted a lot of time going down an
unproductive route.

If you iterate rapidly, so each change is small and is tested immediately, you’ll never
waste too much time going down a rabbit hole of development that ends up being
incompatible with other parts of your system.

When you’re lucky enough to have a large dataset, training a model can take quite a
long time (think hours, days, or even weeks—although the small models of edge AI
don’t usually take that long). It’s a nightmare to reach the end of a 48-hour training
run and realize you made a mistake in your code and the resulting model is useless.

To cut down the time it takes for each iteration, it’s a good idea to begin the process
with a subset of your dataset. For example, you might begin with a 10% stratified
sample (see Figure 7-14). Once you start to see promising results with this subset,
you can gradually add more data in future iterations to improve the performance of
your model.

310 | Chapter 9: Developing Edge AI Applications

Tools can help you avoid some of these problems altogether.
For example, AutoML tools (see “Automated machine learning
(AutoML)” on page 150) designed specifically for edge AI can
factor in hardware constraints so that you never run the risk of
exceeding your specifications.

Remember, you won’t just be iterating on your model: you’ll be changing and
improving every part of your design, from hardware through to application code. To
understand how your performance is changing, you’ll need to use the right metrics
and evaluation procedures—covered later in “Evaluating Edge AI Systems” on page
317.

The goals you set during the design process (see “Technical goals” on page 276) will
help you understand when to stop iterating, either because you are no longer getting
closer to your goal, or because you’ve surpassed it.

The iterative workflow naturally generates a lot of artifacts: datasets, models, training
scripts, and all of the dependencies they bring with them. Keeping track of these is
extremely important, since otherwise it can be difficult to understand your results
and reproduce your work in the future. As we learned in “Machine learning opera‐
tions (MLOps)” on page 151, MLOps provides a framework for doing this reliably.

Updating your plans. During the course of a project, your understanding of the prob‐
lem you are trying to solve, and the methods you are applying to it, is likely to evolve
dramatically. It can sometimes become apparent that a goal is unrealistic, misguided,
or not relevant to solving the core problem. If this seems to be the case, don’t hesitate
to bring your stakeholders together and reappraise your targets.

That said, goals shouldn’t be expected to change frequently. Instead, if you need to
make a course correction, the requirements and specifications of your project can be
adjusted in line with your existing goals.

For example, imagine you are designing a smart lock that uses an image sensor and
facial recognition to control entry to a building. Your goal for the project is to attain
a false acceptance rate of close to 0%. During development you realize that this is
unachievable using vision alone. You work with your stakeholders to update the
scope of the project, allowing for an additional sensor to improve the reliability of the
system.

You should consider this type of discovery a natural part of the iterative development
process. If you realize you should be aiming slightly differently, don’t panic—the
purpose of the process is to allow you to course-correct so that you end up with a
successful product at the end.

An Iterative Work#ow for Edge AI Development | 311

Of course, it’s great if you can identify some of the possible risk factors during your
design process and come up with ready-to-go contingency plans. For example, you
may have predicted at the design stage that there might be a risk that vision alone
is not adequate for ensuring a low false-acceptance rate and come up with some
potential alternative solutions.

Make sure that any changes in goals and direction are agreed upon
by all stakeholders, communicated clearly to everyone involved
with the project, and documented carefully for future reference.
Differences in expectations can lead to major drama—but are easy
to avoid.

Ethical AI review
As we’ve seen, projects can undergo serious changes in direction during iterative
development. This means your iterative process needs to include regular ethical
review of your work. Things you should investigate include:

• Is the project on track to meet its key performance metrics set out during the•
design process (see “Values-based design goals” on page 277)? If not, maybe a
new approach is needed.

• Is your moral feasibility study (described in “Moral Feasibility” on page 187) still•
relevant, or has your project changed and it needs to be updated?

• Do you still have a sufficient dataset and domain expertise to embark on the•
project (see “Data, Ethics, and Responsible AI” on page 206)?

• Are your stakeholders in agreement that you are making progress, or are there•
any concerns?

It’s a great idea to conduct some form of third-party ethical review at this stage in
addition to the ethical analysis undertaken by your own team. It’s much better to
catch a potential ethical issue during iterative development, while it’s still possible to
change course, than once development is over or the product has been shipped.

Model Cards
As your algorithms take shape, it’s important to document their characteristics for
future users. This includes information such as how they are intended to be used,
results of their evaluation against different benchmarks, and details of the processes
used to evaluate them. Without this information, it’s impossible to use a model safely.
While you may have all of these details during the development phase of your project,
it’s important to document them for later reference.

312 | Chapter 9: Developing Edge AI Applications

One standard for this documentation comes in the form of model cards. Model cards
provide a format for describing a model through textual information that can be
shared along with the model itself. More information about model cards, along with a
template for creating one, can be found in this repository on GitHub.

Deployment
There are no distinct lines between iterative development, deployment, and support.
Instead, a project evolves gradually toward satisfying its goals until at a certain
point—hopefully, fairly early in the process—the software side of the project is
deployed onto hardware, and the hardware is placed in the field. This gradual process
is shown in Figure 9-5 (as in Figures 6-1 and 9-2).

Figure 9-5. #e test and iterate portion of the work%ow gradually evolves from pure
development to a mixture of development, deployment, and support; the feedback loop is
maintained at all times

In the context of edge AI, deployment can mean one of two things:

• Deploying a piece of software onto a hardware device•
• Deploying a set of hardware devices into the real world•

In either instance, deploying early and often is the way to go. In the first case, it
ensures you’re always building hardware and software that work well together. In
the second case, it guarantees that you will establish a feedback loop between your
project’s development process and its real-world performance. Deployment should
never be considered a “last mile” operation that happens just before launch. Instead,
it’s a critical part of your development process.

An Iterative Work#ow for Edge AI Development | 313

https://oreil.ly/gXkLF

The distributed nature of edge systems lends itself well to this style of approach.
It’s often possible to perform a staged rollout of a few devices at a time, carefully
controlling the exact places where they are deployed and who is going to be inter‐
acting with them. This means you can ship prototype devices running a prototype
application and get data on real-world performance—but still keep the associated risk
to a minimum.

Deployment of a Livestock Monitoring System
Imagine you are working on a system for monitoring the activity of livestock in an
agricultural setting. You’re developing a smart collar that fits around the neck of a
sheep and can keep track of how long it spends eating, moving, and sleeping. Your
first deployment will happen when you begin to collect a dataset, since you’ll need to
gather real data from live animals.

Assuming you are working with an agricultural producer (sheep rustling is not a
recommended approach), you’d first work with them to iterate on a physical design
for the smart collar that can withstand life in a literal field. Next up, you’d need
to deploy the necessary hardware to collect a diverse and representative dataset—
perhaps by collaring a small portion of their flock. You’d also need some way to label
the data—for example, by capturing video footage that can be used to tell when which
animal is doing what.

After collecting an initial dataset and developing a prototype device, you’d work with
the producer to deploy it on a limited set of animals. You could correlate device
output with labels created using video footage in order to measure the effectiveness of
the system. Successive improvements to the system could be evaluated the same way.

Once you meet a certain threshold of performance, you might begin to scale up
the system, gradually adding devices and monitoring metrics to understand whether
everything is functioning consistently. By adding devices slowly, you limit the risk
of any negative effects. You may also trial different iterations of your hardware and
software at the same time, on different animals, in order to compare its performance.

At a certain point you may feel confident enough in the output of the system that you
consider that it meets your goals. At this point, development is mostly complete and
you can transition into long-term support—which we’ll cover in Chapter 10.

The best way to approach deployment is with a well-thought-out deployment plan.
The steps involved are documented in “Deploying Edge AI Applications” on page
338.

314 | Chapter 9: Developing Edge AI Applications

Support
An edge AI project is never really "nished. Instead, it gradually enters a different
phase of life where the focus is on monitoring and maintaining its performance.

This work is necessary due to drift, which we learned about in “Drift and Shift”
on page 233. Because the world is constantly changing, it’s almost inevitable that
an AI-based product will begin to lose efficacy over time. This makes ongoing
maintenance necessary: updating the software so that it keeps pace with the change
that is happening in its environment.

The support of edge AI applications is covered in depth in Chapter 10. Support
is tightly coupled with evaluation, since evaluative metrics are what allow you to
understand whether performance—or the environment—are changing.

Summary
We now have a high-level view of the entire development workflow. While it’s a great
general road map, the specifics of the journey will differ from project to project.

However, one thing shared by every project is a need for careful deployment, evalua‐
tion, and support. These are the topics we’ll cover in our next chapter.

Summary | 315

CHAPTER 10

Evaluating, Deploying, and
Supporting Edge AI Applications

This is the final theory chapter of this book, and we’ll be covering the processes of
evaluating, deploying, and supporting edge AI applications. These three things are
intimately connected—and in an iterative project they happen in parallel throughout
the course of the development workflow.

Evaluating Edge AI Systems
Evaluation is the key to a successful project. In fact, without evaluation you have no
real way of knowing whether your project is successful or not. While it happens to
be featured at the end of this book, it’s something that occurs all the way through the
development process. It may even start before development, when you’re quantifying
the performance of an existing process you aim to improve with edge AI.

Remember that throughout the process, evaluation needs to be conducted with
participation from stakeholders and end users. It’s very possible that different stake‐
holders may have conflicting criteria for evaluation, depending on their individual
perspectives. Figuring out how to resolve these conflicts is an important part of
evaluation.

Here are some of the stages where evaluation needs to occur:

Examining an existing solution
Much of the time, we’re developing edge AI systems to replace legacy systems
that we think could be better. This makes it very important to understand the
actual performance of the existing system at the beginning of the process. The
goal of our development process will be to beat it, and we can’t beat something
that we haven’t measured.

317

Even if there’s no existing solution, it’s a great idea to come up with a simple
baseline that we can aim to outperform (as we saw in “Developing a baseline
algorithm” on page 303). This brings direction and perspective to our work—and
sometimes, the simple baseline ends up being the best choice.

Exploring potential algorithms
Evaluation is vital during the exploration stages of a project, while we’re getting
to know the dataset and experimenting with different types of algorithms. It’s
how we start to home in on the approaches that look promising. During this
stage, quick and convenient evaluation is helpful in being able to move fast.

During iterative development
The iterative development process is driven by evaluation: we create a solution,
evaluate it, and use the results of evaluation to course-correct so that our next
iteration is better. There are many different ways to evaluate a system under
development, and we’ll meet some of them in “Ways to Evaluate a System” on
page 319.

Before and a!er optimization
When we’re deploying to edge devices, we often have to apply lossy optimiza‐
tion techniques that allow us to fit algorithms within our memory or latency
constraints (see “Compression and optimization” on page 117). It’s important to
evaluate performance before and after optimization to determine how much loss
has occurred. You should always evaluate, even if you are applying an optimiza‐
tion technique that you think is not lossy—just in case a bug in the process causes
some kind of degradation.

On real hardware
There are many reasons why your application might perform differently once
deployed to real hardware. For example, there may be some difference between
the production hardware’s sensors and those that the original dataset was collec‐
ted from. Alternately, there could be some difference in the way your program
runs when built for real hardware versus on your development machine. It’s
important to evaluate before and after deployment so you can understand if
there’s any impact.

During limited deployment
It’s always a great idea to do a staged deployment, where you roll out your system
incrementally so you can catch any issues before you scale up. This is another
key moment for evaluation, since you’ll need some way to measure whether your
system is performing as expected.

318 | Chapter 10: Evaluating, Deploying, and Supporting Edge AI Applications

Ongoing postdeployment
Performance should be monitored continually after you have deployed, which
naturally requires evaluation. There’ll be more detail on this stage in “Postde‐
ployment Monitoring” on page 343.

Evaluation and Responsible Design

Ethical AI depends heavily on evaluation. For example, to detect
bias, it’s vital to understand how your system is performing on
different types of input. By evaluating at every stage, you’re giving
your team visibility into the places where ethical concerns might
creep in.

Ways to Evaluate a System
There are many ways to evaluate an edge AI system, and different mechanisms will
be important during different stages of the development process. They all require
varying amounts of time and investment—which may make them appropriate for
either short, tight feedback loops or longer, broader ones.

Following are some of the key approaches.

Evaluating individual components
A system is made up of many smaller components, and there are different ways to
evaluate each. For example, your algorithmic pipeline may include the following:

• Windowing•
• Downsampling•
• Digital signal processing•
• Machine learning•
• Postprocessing•
• Rule-based algorithms•

Each of these moving parts will have its own tools for evaluation, and experts in the
relevant fields will understand how to use them. This type of evaluation is essential
when building a pipeline of steps that work together to deliver a result. If you set
up mechanisms for evaluating the individual components of your system, you will
more easily be able to identify the cause of any systemic issues. It will also help you
iterate individually on specific components in isolation, since they may be owned by
different teams.

Evaluating Edge AI Systems | 319

Evaluating integrated systems
It’s not enough to know that all the individual pieces of a system work together: you
also need to understand that they function correctly as a whole. Otherwise, emergent
systemic problems may prevent your application from performing well.

For example, you may have a machine learning model and postprocessing algorithm
that seem to function well when tested individually. However, on linking them
together you may find that they do not perform adequately.

A combination of component-level tests and systemic tests is required to really
understand the performance of a system. Testing an integrated system will tell you
whether a system is underperforming, but it won’t provide much explanation on
its own.

Simulated real-world testing
In many cases, the datasets available for training are not realistic: they might repre‐
sent an ideal set of conditions, having been collected in a lab or carefully cleaned
up in order to present the best possible dataset for training. Evaluation on a dataset
such as this may provide misleading results. To really understand performance, it’s
necessary to test things out in the real world.

It would be great if we could test all of our work in production at the click of a
button, but the realities of embedded development make this impossible. Compared
to software engineering on the web, it’s a lot more time consuming, expensive,
and risky to push an embedded application live. This means that in this respect,
embedded development has a less effective feedback loop between development and
real-world performance.

One solution to this problem is to simulate real-world conditions as closely as pos‐
sible during development, so that changes to an algorithm or an application can
be tested in close to real time. This might involve collecting a dataset that reflects
the type of real-world conditions you expect to see, then running it through a fully
integrated build of your application.

For example, imagine you are building a fitness tracking wearable. It could be tested
using streams of data that have been captured from genuine users wearing dummy
devices containing only sensors. The data would need to be labeled by an expert so
that it can be used for evaluation.

If real-world data is too difficult to obtain, it’s also possible to use synthetic data.
Realistic streams of data can be constructed by layering samples from conventional
training datasets on top of samples of background noise, applying augmentation
to increase the variance of the data. This is an option available in Edge Impulse’s
performance calibration feature, described in “Performance Calibration” on page 337.

320 | Chapter 10: Evaluating, Deploying, and Supporting Edge AI Applications

1 If you can get away with deploying to a development board before your official hardware is ready, you should
go with it.

A prominent example of the use of simulated real-world testing is in Amazon’s Alexa
certification process. Hardware products that integrate Alexa must meet minimum
standards for the performance of their keyword-spotting systems. Performance is
evaluated by playing a number of clips of audio from a speaker that is a certain
distance from the device, under varying conditions. To pass, the device has to suc‐
cessfully identify when a clip contains a keyword—and avoid activating when it does
not.

Real-world testing
It’s best to start testing your system in the real world as early as possible: as soon as
you have hardware, if not before.1 There are two main types of real-world testing:

• Quality assurance testing, where you deliberately put a product through its paces•
to try to identify any problems

• Usability testing, where you allow users to interact naturally with a product in•
order to understand how well it works

Real-world testing is slower and more expensive than some types of evaluation,
but it’s essential to product development. It’s also a lot cheaper than bringing your
product to market and then realizing it doesn’t work.

Quality assurance testing. Quality assurance (QA) is a systematic way of exploring a
product and understanding whether it meets the appropriate level of quality—typi‐
cally based on the product’s design goals (see “Setting Design Goals” on page 274).
During development, QA engineers design and implement strategies for exercising
the features of a product and trying to understand its effectiveness and overall fit for
purpose.

QA is a major field with its own domain experts, and it’s absolutely critical to the
process of building a good product. It’s too big an area to explore within the confines
of this book, but here are some of the ways that QA professionals can be important in
edge AI projects:

• Getting hands-on with a prototype and trying to find problems•
• Testing individual components during development (for example, a keyword-•

spotting algorithm)
• Designing systems and procedures for testing products throughout the workflow•
• Certifying whether a product meets its design goals•

Evaluating Edge AI Systems | 321

https://oreil.ly/Pvi5L
https://oreil.ly/Pvi5L

The QA process begins as soon as you have design goals, since the person in a QA
role will have to come up with a system for testing them. Ideally, QA will happen
throughout the development process as part of the procedure of evaluating each
iteration’s work.

Usability testing. While QA testing is focused on deliberately trying to find problems,
usability testing is about observing natural usage of your product and using your
observations to guide improvements.

Usability testing happens with real users. They could be members of the public,
potential customers, or people from inside your own team or organization. The key is
that they are interacting with your product in a realistic way.

Some usability testing is done in studies, where people are brought in to a controlled
environment and encouraged to interact with the product in certain ways. Other
types of testing are more natural: for example, beta testing involves providing users
with early versions of a product that they can take away, use for a while, and provide
feedback on.

The best plan will vary depending on your situation, but typically usability studies are
done earlier in the development process, where focused input is required to help steer
the project, and beta testing is done later, when the product is nearing completion
and a more general overview is needed.

An interesting variety of usability testing is known as dogfooding (from the concept of
“eating your own dogfood”). This is when members of an organization use their own
prerelease hardware in order to understand its usability and generate feedback.

Usability testing is also an area with its own domain experts. It’s the most expensive
type of testing, but it’s also the most valuable: you get to see how your system is
performing in something close to reality.

Monitoring a deployed system
It’s critical to understand the performance of a system once it’s been deployed.
As we’ll see in “Postdeployment Monitoring” on page 343, this can be extremely
challenging.

Useful Metrics
Any kind of quantitative evaluation will result in metrics: key numbers that represent
some aspect of the performance of a product or component. Collecting the right
metrics is extremely important: as the saying goes, “you are what you measure,” and
if you choose the wrong values to focus on, your iterative process will go in the
wrong direction.

322 | Chapter 10: Evaluating, Deploying, and Supporting Edge AI Applications

https://oreil.ly/tVnyZ

Fortunately there are lots of standard metrics that are relevant to edge AI systems;
they’ll likely be familiar to anyone who works in a connected field. Following are
some of the most important ones.

Algorithmic performance
These metrics are useful in understanding the performance of AI algorithms. They
typically vary depending on the algorithm type (as described in “Algorithm Types by
Functionality” on page 96).

Loss. Loss is a way of measuring the correctness of a model’s predictions. The higher
the loss score, the more inaccurate the predictions are. The exact meaning of a loss
metric is determined by a loss function. Standard loss functions exist for different
types of problems, or you can come up with your own. Loss is calculated and used
in the training process for some types of machine learning models, such as deep
learning.

Loss can be computed for a single prediction, but it is common to calculate the mean
loss for a whole dataset. For example, you might compute the mean loss over your
validation dataset.

Loss doesn’t have units, so it only means anything relative to itself. This makes it a
good measure of how a model’s performance changes over time during training, but
not a particularly helpful metric if you’re trying to understand how the model will
work in the real world.

Where loss functions are used in the process of optimizing machine learning mod‐
els, it’s important that an improvement to the optimization loss corresponds to
an improvement in other metrics. The loss function should be selected based on
the problem you are trying to solve (most common problems have standard loss
functions), and your metrics should be selected based on the same problem. Without
agreement between the two, you’ll end up with a model that does not solve the right
problem.

Accuracy. Classification is a common task, and there are a few different metrics used
to express how well a classifier is performing. Accuracy is the simplest and best
known of these: it’s just the percentage of classifications that were correct across a
given dataset.

Accuracy is a reasonable way to understand the performance of a model at a glance,
but as a single value it obscures a lot of context. For example, a single accuracy
number can’t tell us anything about how the individual classes in a dataset performed.
A 90% accuracy metric on a balanced dataset might sound impressive, but on an
unbalanced dataset (perhaps consisting 90% of one class and 10% of another) it could
mean the model is terrible.

Evaluating Edge AI Systems | 323

Because of this limitation, it’s best to use accuracy in conjunction with other metrics
that capture more nuance—or at least calculate it for each class individually.

Confusion matrix. A confusion matrix is a powerful tool for understanding how a
model is performing. It’s a simple table that shows the ways that individual samples
were classified. An example is shown in Figure 10-1, a screenshot from Edge Impulse.

Figure 10-1. A confusion matrix showing results for a keyword-spotting model

In Figure 10-1, the row headers NO, NOISE, and YES represent three classes of
samples in a dataset. They correspond with the similarly named column headers,
which represent three classes identified by a classifier. The percentage in each cell
indicates the proportion of samples from the dataset class (indicated by the row
header) that were identified by the classifier as fitting into a particular class (indicated
by the column header).

For example, we can see that 96.3% of the instances of NO were correctly classified
as NO, while 3.7% of them were incorrectly classified as YES. This breakdown allows
us to understand how our classifier is performing between classes. This is much more
interesting than a single accuracy metric, since it helps us begin to understand exactly
where our model is struggling.

Precision and recall. From the point of view of a single class in the confusion matrix,
there are two different types of mistakes a classifier can make. Both of them are cases
of mistaken identity.

In the first case, a genuine member of the class is misidentified as belonging to a
different one. For example, a smart camera for bird spotting might mistake a bird for
leaf, missing the bird entirely.

In the second case, a member of a di$erent class is misidentified as belonging to the
one we care about. For example, we might mistake a leaf for a bird.

Precision and recall provide ways to describe how often these mistakes occur. Preci‐
sion tells us how frequently our model mistakes a boring old leaf for a lovely bird,
while recall describes how often our model misses a bird it should have spotted:

324 | Chapter 10: Evaluating, Deploying, and Supporting Edge AI Applications

2 Google’s Machine Learning Crash Course has a great explanation of precision and recall.

Precision = number of birds we got right
number of inputs we thought were birds

Recall = number of birds we got right
actual number of birds in the dataset

Each of a dataset’s classes will have its own precision and recall, but they can also
be expressed as a mean over all of the classes. It’s a great metric because it lets us
characterize the types of mistakes made by a model.2

Precision and recall are both expressed as numbers between 0 and 1, with 1 being
perfect and 0 being completely wrong. There’s typically a trade-off between them:
you can reduce one by increasing the other. This makes them important metrics for
tuning.

Con"dence Thresholds
Whether precision or recall is more important depends on your application. For
example, if you’re designing a voice-activated smart speaker, it would be pretty
annoying to have it keep activating for random sounds. In that case, it’s better to
aim for a high precision—which may come at the cost of a lower recall.

Alternatively, if you’re designing a system for detecting health issues, it may be better
to have high recall, so you are unlikely to miss any health problems that could put
somebody’s life at risk. The trade-off might be a lower precision, meaning you are
more likely to have a false alarm.

A common way to trade off between precision and recall is by adjusting the con"‐
dence threshold of your application. When it makes a prediction, a classifier usually
outputs a probability distribution: a list of numbers, one for each class. These numbers
sum to 1, and they represent the probability of the input belonging to each class.

For example, a model for detecting health issues may have an output that looks like
this:

Healthy: 0.35
Sick: 0.65

If we wanted, we could say that whichever class has the highest score is the one we
assume is true. For example, in the preceding case we would consider the patient to
be sick because the probability of them being sick is higher than the probability of
them being healthy.

Evaluating Edge AI Systems | 325

https://oreil.ly/LLXBl

3 The word positive is often replaced with acceptance, and the word negative with rejection.

Since there are two classes, by taking whichever is the highest we are effectively
assigning a confidence threshold of 0.5. If a class has a score of over 0.5, we are
confident that it represents the truth.

However, we may not consider 0.5 a high enough probability to consider someone
sick. If it’s a serious, scary illness we may need to be more confident in our prediction
than slightly better than a coin toss. For example, we might choose 0.75 as our confi‐
dence threshold. In that case, we would not consider the preceding result positive for
either class. Instead, it represents an ambiguous outcome.

As we change the confidence threshold, the precision and recall will change. A lower
confidence threshold tends to result in higher recall but lower precision, since for a
given class we’ll catch more of the examples—but at the cost of having more false
alarms. A higher confidence threshold may increase the precision but reduce the
recall, since some examples might not meet the threshold.

Positive and negative rates. Another name for recall is the true positive rate, or TPR.
It’s the rate at which true positives—meaning correct positive identifications—are
expected to occur. There are three other acronyms that cover the other possibilities of
errors within a classifier’s confusion matrix. False positive rate (FPR) represents how
often negative examples (items outside of our class of concern) were falsely identified
as being things we care about.

True positive rate = true positives
total positives in dataset

False positive rate = false positives
total negatives in dataset

Inversely, true negative rate (TNR) describes how often those negative examples were
correctly ignored. Finally, false negative rate (FNR) describes how often a sample
belonging to the class we care about is incorrectly ignored.3

True negative rate = true negatives
total negatives in dataset

False negative rate = false negatives
total positives in dataset

326 | Chapter 10: Evaluating, Deploying, and Supporting Edge AI Applications

These rates are all different ways of expressing how well your system is able to
distinguish between classes. They can be traded off to determine performance in the
same way we described in “Confidence Thresholds” on page 325.

F1 score and MCC. It’s sometimes useful to have a single statistic to describe the perfor‐
mance of a classifier: for example, when comparing similar models. One such statistic
is the F1 score, a single number that is derived from the precision and recall scores (by
taking their harmonic mean):

F1 = 2 precision · recall
precision + recall

While convenient, the F1 score has some limitations. It doesn’t include any informa‐
tion about true negatives—meaning it isn’t suitable for use with unbalanced classes,
since if there are different numbers of items in each class the F1 scores between
classes will be incomparable.

For this reason, a different metric known as Matthews correlation coe&cient (MCC)
can be a better choice. It includes all of the squares in the confusion matrix, so it’s a
better overall indicator of model quality.

Although the MCC is better, it’s still limited by nature. Rolling an entire confusion
matrix into a single number removes our ability to consider each cell individually.
As we saw in “Confidence Thresholds” on page 325, every application has a slightly
different ideal balance between precision and recall. The F1 and MCC scores prevent
us from considering them individually—so if we’re comparing multiple models we
will be blind to some of the differences between them.

ROC and AUC. As we’ve learned, it’s possible to change the performance of a classifier
by varying the confidence threshold. The impact of doing this can be visualized using
a chart known as the receiver operating characteristic curve, or ROC curve, as shown in
Figure 10-2.

Since the confidence threshold can be used to trade off between the TPR and FPR,
the ROC curve plots one of them on either axis. To compute the curve, the TPR and
FPR are calculated for a range of different confidence thresholds.

This chart is extremely useful since it describes all of our options for tuning the
classifier. We can pick a point on the curve that represents the trade-off we desire
based on the needs of our application. We’d then use the corresponding confidence
threshold to gate the output of our model.

Evaluating Edge AI Systems | 327

https://oreil.ly/dtn0y

4 An AUC of 0 means the model is—weirdly—getting every single prediction wrong, which for a binary
classifier means you could just flip the predictions to get perfect performance. If this happens, it’s usually a
sign that you have gotten your labels mixed up somewhere!

Figure 10-2. An ROC curve plotted using Matplotlib

We can also use the ROC curve to create a single metric that describes the perfor‐
mance of our model based on the probability that it gets a particular answer right. It’s
obtained by calculating the area under the curve (AUC, visible in Figure 10-2), and it
has a value from 0 to 1. A model with an AUC of 1 gets every single prediction right,
while a model with an AUC of 0.5 has a 50/50 chance of predicting the right class.4

The ROC is useful, but it’s still a single statistic representing a complex set of behav‐
iors. As such, it still isn’t helpful if we’re trying to understand how our model will
perform in different circumstances. In that case, a combination of ROC curve and
confusion matrix will give us a lot of helpful insight.

Error metrics. Classifiers are only one type of model. Another major category, regres‐
sion models, have their own set of common metrics. Since a regression model is
designed to predict a numeric value, the best way to understand its performance is
with a metric that compares the difference between its output value and the value that
a data sample is labeled with.

328 | Chapter 10: Evaluating, Deploying, and Supporting Edge AI Applications

Here are some of the top error metrics used for regression models:

Mean absolute error (MAE)
This simple metric consists of the mean of the errors, where error is defined as
the difference between a predicted and actual value. It’s calculated for a dataset as
follows:

MAE = sum(error)
number of samples

For example, imagine we’ve trained a regression model to predict the weights of
apples from photographs. Let’s assume the apples are weighed in grams. After
testing the model, we calculate an MAE of 10. This means that, on average, the
predicted weight is off the actual weight by 10 grams.

This simplicity makes the MAE very useful. However, there are some alternatives
that can help shed light on different types of error.

Mean squared error (MSE)
The MSE is very similar to the MAE—except that the errors are squared before
summation:

MSE = sum(squared errors)
number of samples

Since we square the errors, the MSE will always either be positive or zero—and
large errors will make a bigger difference to its value. This can be helpful, since
large errors are often worse than small ones but may be deceptively flattened out
by the simple calculation of MAE.

Root mean squared error (RMSE)
The downside of MSE is that since it’s based on squared values, it is harder to
interpret than the MAE, which is provided in the original units. By calculating
the square root of the MSE, known as the RMSE, we can express it in the same
terms as the labels:

RMSE = sum(squared errors)
number of samples

The RMSE has the same benefits as the MSE, but it’s easier to interpret. The
downside is that it’s slightly more complicated to think about.

As with classification metrics, expressing the performance of a model as a single value
can be risky. Your dataset may contain different subgroups that experience different

Evaluating Edge AI Systems | 329

5 There’s a good explanation of mAP in the article “mAP (mean Average Precision) Might Confuse You!” by
Shivy Yohanandan.

performance. We’ll cover some strategies for dealing with this issue in “Techniques
for Evaluation” on page 334.

Mean average precision. Mean average precision, or mAP, is a fairly complex met‐
ric that is used to express the performance of an object-detection model. Object-
detection models attempt to draw bounding boxes around any objects in the image;
the mAP looks at how well the predicted bounding boxes overlap with the real
boxes—either within a given image or across a dataset. It combines this with some‐
thing like a confidence interval in order to come up with a score.5

The major downside of mAP is that while it’s based on the area of the boxes, it doesn’t
take into account the number of boxes. This means a model can score well on mAP
even if it predicts multiple boxes where a single box should be. That said, it’s become
the standard way of rating object detection models.

The sklearn.metrics library contains implementations for most
of the above metrics—along with many more. It’s worth exploring
the literature around metrics to determine the ideal ones to use for
your task.

Computational and hardware performance
Edge AI almost always involves managing the balance between algorithmic and
computational performance. While algorithmic performance metrics tell us how well
an algorithm is doing its job, computational and hardware performance metrics tell
us how quickly the algorithm is running, and what resources are being consumed in
the process.

Informed by these metrics, we can make an educated trade-off between algorithmic
complexity and computational resources. For example, the latency required for a
particular application on given hardware may inform the size of the deep learning
model that can be used.

The following metrics help us understand the size of the computational task and the
burden that it places on our hardware.

Memory. Memory use includes both RAM and ROM, which have fairly different
properties. ROM is where your algorithms are stored long term, including the
parameters of any machine learning models. RAM is the working memory of your
program while it is running. There are hard limits on RAM and ROM (or disk space)
for any edge device, so it’s important that your algorithms fit what is available.

330 | Chapter 10: Evaluating, Deploying, and Supporting Edge AI Applications

https://oreil.ly/aJ3Dy
https://oreil.ly/zq0CD

6 There are actually three uses of RAM: data (or global), stack, and heap. Data RAM usage is set at compile
time, while stack and heap usage can change while a program runs. Some embedded programs intentionally
only use data, to avoid any surprises. Stack and heap both require separate high watermark tests.

An algorithm can’t run in isolation; it has to exist inside some kind of program. The
rest of the program also takes up memory—so when you’re thinking about RAM and
ROM usage, you’ll need to factor the rest of your application in, too. In most cases,
you’ll end up with a RAM and ROM budget that you need your algorithm to stick to
in order to fit within the rest of your application.

For example, imagine you’re adding edge AI to a brownfield system. You can analyze
the memory being used by the existing application and decide what is left over for
your new algorithms. Similarly, in a greenfield system you will have to decide how
much of your ROM and RAM is budgeted for algorithms versus the other parts of
your application.

Measuring the RAM and ROM usage of an application is nontrivial. ROM seems
relatively easy: in theory, an embedded engineer can compile a simple program that
contains your algorithms and then look at the output to determine how large it is. In
practice, however, there may be some overlap between the dependencies required for
your application and for your algorithms. This means that your algorithms could end
up making less impact on your firmware’s ROM usage than it might seem.

This means that the most reliable way of estimating your algorithms’ ROM usage is
to build your entire application both with and without them. The difference tells you
how much ROM is being used.

Deep learning models tend to be big, so you may find yourself having to reduce the
size of your model in order to fit within a ROM budget. It’s always a good idea to try
quantizing your model before spending a lot of time on optimizing the rest of your
application—the resulting reduction in accuracy is usually very minor.

Measuring RAM usage is a bit more challenging. First, you typically have to run the
algorithm in order to determine it. Second, if your program uses too much RAM it
may not actually be able to run. Third, determining RAM usage on a running device
will require some kind of test program or debugger.

A good approach to measuring RAM usage for a specific algorithm is to use a test
program. The program should first fill the entire memory with a specific marker
value. You can then run your algorithm. After running it, you should iterate through
the device’s memory and check how much of it is still filled with the marker value.
This “high watermark” will give you an estimate of memory usage—although it won’t
tell you the worst-case memory usage, which may be higher.6

Evaluating Edge AI Systems | 331

You can potentially use this technique with a simulator to estimate RAM use without
having to deploy to an actual device. This can be convenient during development,
and is the approach used within some end-to-end platforms (such as Edge Impulse).

Measuring RAM and ROM usage is much easier on devices with an operating system,
since you can directly query the operating system for metrics.

Floating-point operations (FLOPs). A floating-point operation is a single computation
involving two floating-point numbers, and FLOPS—or %oating-point operations per
second—is used as a measure of computing power.

The total number of FLOPs is sometimes used to describe the amount of work
required to compute one inference of a deep learning model. This makes sense for
server-side models, since computation is typically done in floating-point arithmetic.

Given the FLOPs of a model and the FLOPS of a processor (and looking past the con‐
fusing acronyms) it should, in theory, be possible to estimate the latency of a model.
However, many edge models are quantized and therefore use integer math, making
the FLOPs of the original model less relevant. In addition, the makers of embedded
processors do not typically report FLOPS (or IOPS, the integer equivalent). Lastly,
calculating FLOPs for a model is not always straightforward.

In combination, all of this makes FLOPs of limited use for determining edge AI
performance. That said, it’s worth mentioning in case you happen to encounter it.

Latency. In the context of edge AI, latency is the amount of time that it takes to
run all of the parts of an algorithm, end to end. For example, it might take 100
milliseconds to capture a window of audio, downsample it, run it through a DSP
algorithm, feed the result into a deep learning model, execute the model, and process
the output. Latency is typically specified in milliseconds or as frames per second, the
latter mostly for vision applications.

Latency depends on the algorithms used, the optimizations available, and the hard‐
ware itself. Faster hardware and better optimizations (for example, those provided
in the libraries described in “Math and DSP libraries” on page 154) lead to lower
latency—and generally, the smaller and simpler a machine learning model is, the
lower latency it has.

Some applications require low latency. For example, if an application needs to
respond in real time to user input, then it needs to operate with low latency. In
other cases, latency is not as important: perhaps the application’s response can be
asynchronous and does not have to happen quickly.

In some situations, lower latency means better algorithmic performance. For
instance, a keyword-spotting model running many times per second has more oppor‐
tunity to detect a keyword than one running once per second.

332 | Chapter 10: Evaluating, Deploying, and Supporting Edge AI Applications

7 This is used by Edge Impulse to provide latency estimates during model development.

Measuring latency usually requires access to a device, unless cycle-accurate simula‐
tion is available (see “Emulators and simulators” on page 160). However, there are
some methods for estimating the performance of deep learning models based on
benchmarking similar workloads on hardware.7

Duty cycle. Embedded applications are often required to limit energy usage in order
to preserve battery life. They do so by performing computation periodically, as they
receive new data, and then going into a low-power sleep mode while they wait for the
next data to arrive.

The processor’s wake/sleep pattern is known as its duty cycle. For example, a pro‐
cessor may wake up every 200 milliseconds to read some sensor data, taking 10
milliseconds to do so. It might then spend 50 milliseconds processing the data using
an edge AI algorithm before going back to sleep.

In this case, the processor wakes up for 60 milliseconds every 200 milliseconds. Out
of every second, it would spend 350 milliseconds awake and processing data. This
would give it a duty cycle, expressed as a percentage, of 35%.

Duty cycle is important for determining the power consumption of an embedded
system, since it determines how much energy the processor consumes.

Energy. Battery life is a common concern in embedded applications, so determining
the energy consumption of a device is very important. It is measured in terms of
current, and typically expressed in milliamperes (abbreviated mA, and also known as
milliamps).

Each component in an embedded system has a different current draw, and it depends
heavily on how it is being used. For example, a processor uses more or less current
depending on which of its features are currently enabled, and a sensor may use more
current while it is actively making measurements.

For this reason, it’s important to measure energy consumption during typical usage. It
may make sense to monitor a device for an extended period of time to determine its
actual energy usage. This can be done with a special tool such as a current monitor or
data logger.

Battery capacity is measured in milliamp hours (mAh), which indicates the number
of hours the battery can sustain a 1 mA current. For example, a 2,000 mAh battery
will power a 100 mA device for 20 hours.

Evaluating Edge AI Systems | 333

For a processor, energy consumption is intimately connected with duty cycle, which
is a function of latency. This means low latency algorithms save energy, so it’s impor‐
tant to factor in energy usage when designing your algorithms and application.

Thermal. Electronic components produce heat as waste, and this can be relevant
in some applications: processors can become hot during computation, and if there’s
nowhere for the heat to go they may have problems. In addition, some components
have minimum operating temperatures.

Thermal energy is measured in degrees Celsius. Most components’ datasheets will
provide their operating ranges. Some processors, mostly SOCs, have built-in temper‐
ature sensors and can throttle their own performance if they start to get hot. MCUs
don’t typically have this functionality, so if you want to monitor their temperatures it
is up to you to install a sensor.

The lower the duty cycle of a processor, the less waste thermal energy it will produce.
This means that latency is a tool for limiting thermal emissions.

Techniques for Evaluation
Evaluation makes use of a toolbox of techniques, some of which we’ve seen before
and others that are new. Here are the most important items:

Training, validation, and testing splits
As we learned in “Splitting Your Data” on page 256, it’s absolutely critical to
divide your dataset into parts in order to prove that your model can perform
on previously unseen data. The bulk of your evaluation should be done on your
validation dataset.

To preserve its value, you should only use your testing dataset when you think
that you are done. If you test on your testing dataset and determine that your
model doesn’t work, you’ll have to throw it out and start from scratch: otherwise,
you’ll risk overfitting your model by adjusting it until it works great on your
testing dataset but doesn’t work well on real data.

Of course, you can potentially capture more data at any point during the
development process. You should try to do this wherever possible, continually
augmenting your entire dataset with new samples to improve your ability to train
and evaluate models.

Cross-validation
One of the downsides of splitting data for evaluation is that the model will only
be as good as whatever data was in its training dataset. Cross-validation, which
we previously encountered in “Cross-Validation” on page 259, attempts to work
around this, allowing a practitioner to train multiple models on the same dataset
and compare their performance.

334 | Chapter 10: Evaluating, Deploying, and Supporting Edge AI Applications

To begin, a training dataset is split into training and validation parts. A model
is trained using the training part and tested on the validation part. The metrics
are logged, and then the data is recombined and split again at random. A second
model is trained on the new training split, then evaluated on the new validation
split. This process is continued any number of times—potentially dozens.

The result of the process is a series of models, each trained and validated on
different subsets of the data. The metrics for the models can be analyzed to
understand whether the model’s quality is heavily dependent on the data’s com‐
position. The hope is that each of the models has similar performance. If so, the
best-performing model can be selected and scrutinized in a final test against the
testing dataset.

The most common type of cross-validation is known as k-fold cross-validation.
Information on the process is provided in the scikit-learn documentation.

Analyzing subgroups
The metrics we learned about in “Algorithmic performance” on page 323 can
be calculated for an entire dataset, or a split—or they can be calculated for
any arbitrary subgroup of your data. This can be an extremely powerful tool,
especially useful for understanding the fairness of your algorithms.

Imagine you are building a computer vision application to identify different
classes of vehicles: cars, trucks, and SUVs. You can calculate algorithmic perfor‐
mance metrics for each class, which will tell you how good the algorithm is at
identifying each type of vehicle.

However, with a little extra information you can go beyond this. For example, if
your dataset includes metadata about the make of a vehicle in each photograph,
you can calculate the metrics for each of those subgroups. You can then conduct
an analysis to make sure that your model performs equally well for each sub‐
group: for example, you might find that your model underperforms on a specific
make of car, in which case you could try to collect more photographs of it for
your training dataset.

The model itself doesn’t care about the make of the vehicle, only the high-level
type (car, truck, or SUV). Regardless, you can still use information about the
make in order to better evaluate your system. You can imagine how useful this
type of technique is when investigating ML fairness using almost any dataset.

Metrics and distribution
It’s common for subgroups in datasets to be unevenly distributed. For example,
imagine you are training a classifier to distinguish between classes A, B, and C.
Your dataset may have 60% of samples in class A, 20% in class B, and 20% in
class C.

Evaluating Edge AI Systems | 335

https://oreil.ly/5uy5t

The metrics you use for evaluation should be sensitive to problems in all of
these classes. For example, the accuracy metric might be 60% across all classes.
However, this single number won’t tell you if the model is getting all of class A
correct, but none of B or C.

One way to understand whether your metrics are adequate is by “evaluating”
a fake model that returns deliberately bad results that fit the underlying distribu‐
tion of the data. For example, you could create a random classifier that classifies a
random 60% of examples as A, 20% as B, and 20% as C. By evaluating the output
of this random classifier, you can understand how well your chosen metrics
communicate the model’s lack of performance.

Using multiple metrics
Many different metrics can be measured for a single project. For example, you
may determine numbers that represent accuracy on a testing dataset, computa‐
tional latency, and memory usage. Building an effective solution often means
balancing constraints between multiple metrics. For example, we might choose
to reduce latency by using a simpler model—but this could result in a drop in
accuracy.

These individual metrics may all be important, but they don’t always matter
equally. For example, for a project that needs to work at high speed, you may
place a higher priority on latency than accuracy. In a dataset with multiple
subsets, you may care about performance on one subset more than another.

The overall weighting of different metrics—how much you care about them indi‐
vidually—is something you’ll need to determine along with your stakeholders.

Synthetic testing data
Data is often hard to come by, especially if you’re looking to test your system
on rare and unusual inputs. For example, an anomaly detection system may be
designed to catch catastrophic failures that have never actually been recorded in
the real world.

One way to get around this problem is to generate synthetic data. Synthetic data
is any kind of data that is created artificially. This could mean taking a real
dataset and distorting its samples to create new ones, or it may mean generating
entirely new inputs using some kind of algorithmic process. For instance, we
could generate a set of inputs designed to simulate catastrophic failures in order
to test our anomaly detection system.

Synthetic data can be a helpful concept. It potentially gives you access to an
unlimited amount of labeled data that can be used for testing—or even for
training models. However, not all data can be faked, and it’s risky to depend
entirely on synthetic data, especially for evaluation.

336 | Chapter 10: Evaluating, Deploying, and Supporting Edge AI Applications

Performance Calibration
Most algorithms that operate on streaming data involve a postprocessing stage, where
the raw result of running an AI algorithm over the data stream is filtered, cleaned up,
and used to make decisions. For example, in a keyword-spotting application the raw
output of an audio classification model is a stream of class probabilities, typically one
set of probabilities every few milliseconds.

To identify specific utterances of a keyword, this stream needs to be filtered (to
remove any brief, spurious misclassifications), thresholded (to identify when there is
a strong positive signal), and debounced (so that a single utterance is not picked up
multiple times). The postprocessing algorithm used to do this has various parameters
that affect how it works: for example, a specific threshold must be chosen that pro‐
vides the preferred balance of false positives versus false negatives (see “Algorithmic
performance” on page 323).

In theory, this threshold could be chosen after deployment, with usage data collected
and the number of false positives and false negatives determined. However, the cost
and complexity of deployment and observation, and the potential disruption involved
with deploying a version of the application that does not work well, make this an
unappealing option. Even if feasible, the feedback loop for trying out new thresholds
would not be very tight: it would take a long time to test out each new value.

To create a tighter and more convenient feedback loop, it’s possible to simulate real-
world conditions in the lab. For example, you might record and label a long sample
of real-world audio that features different words being spoken. The keyword-spotting
algorithm would then be run across this sample, creating a raw output. You could
then experiment freely with various postprocessing configurations in order to clean
up the output, measuring it against the sample’s labels to understand performance.

The resulting procedure is far easier to run than one involving a full real-world
deployment, and it can be automated during model development as a way of testing
out different approaches. Tightening the feedback loop creates a powerful tool for
evaluating performance in order to guide algorithm development. Edge Impulse
Studio, an end-to-end platform for developing edge AI applications, provides an
implementation of automated performance calibration.

Evaluation and Responsible AI
Proper evaluation is one of our core tools for developing AI applications responsibly.
If you evaluate your applications well, you’ll understand how they are likely to per‐
form in the field—and across different subpopulations represented in your dataset.
The better your evaluation, the less risk that you’ll run into an issue in production.

Evaluating Edge AI Systems | 337

Responsible design involves evaluating the problem-solution fit within its environ‐
mental context. Any evaluation is only as good as your understanding of the problem
and the operating environment. This is what makes it so important to involve domain
experts and stakeholders in the evaluation process.

Evaluation is also at the core of the iterative development workflow. This pretty much
guarantees that if you don’t do a good job of evaluation, you won’t have a good
product. You should make sure that you put a good deal of weight on evaluation,
and it’s worth having your stakeholders, domain experts, and advisory board give the
process a lot of attention to make sure it will capture every detail possible.

You may have noticed that many evaluation techniques depend entirely on your data‐
set. This makes the construction of your dataset essential to ethical AI development
(see “Data, Ethics, and Responsible AI” on page 206). Evaluation in the field is slow
and costly, so datasets are a vital tool.

That said, there is no way to avoid the need for evaluation in a real-world environ‐
ment, with real users. Quantifying the performance of your algorithms using test data
is not enough. It’s critical to understand the way your entire system works in context,
and with the people who are going to be using it. You will need to find opportunities
to weave this into the workflow as early as possible.

We’ve now covered the predeployment parts of evaluating a model. We’ll look at tools
for postdeployment evaluation in “Postdeployment Monitoring” on page 343.

Deploying Edge AI Applications
As we mentioned in “Deployment” on page 313, deployment is best considered an
ongoing process rather than a single event at the end of a project. However, each
time a new iteration of your system is put in contact with the real world there is the
potential for major risk—along with valuable new learning. It’s important to have a
process set up to account for this.

For example, imagine you are deploying a new version of your sheep activity classifi‐
cation model. There’s a chance it might produce incorrect predictions, which could
have a negative impact on the agricultural operation if they are not quickly identified
as such. It may also reveal new insights that can be applied to the next iteration of the
design—but only if they are captured.

To make sure deployment goes smoothly, minimizes risk, and maximizes benefits,
you should develop and document a deliberate process that you can follow each time.
Ownership for these tasks is important; they should be tracked by members of your
team, typically those who are responsible for product development and operations.

Next, we will look at some of the key tasks you might include.

338 | Chapter 10: Evaluating, Deploying, and Supporting Edge AI Applications

Predeployment Tasks
These are tasks you should consider performing before a deployment happens. They
should be guided by technical expertise, insight from stakeholders, and domain
expertise from a subject matter expert:

Decide on the objectives
Each deployment should have clear, written objectives. For example, you might
be deploying more devices in order to scale a system up, or you might be
deploying the latest iteration of software to a set of hardware that is already in the
field.

To better manage risk and improve your ability to measure performance, you
should try to limit the number of objectives for a given deployment. Like any
experiment, the more input variables you adjust, the more difficult it is to
understand what caused changes in the output.

Identify key metrics
To understand the impact of a deployment, you’ll need to keep track of metrics
that describe what your system is doing. These should include performance met‐
rics, if available, in addition to general numbers that will highlight any changes—
such as the distribution of inputs and outputs.

You’ll use these metrics to understand both the changes made by whatever you
have deployed, and whether your objectives have been met.

Performance analysis
Before deploying a new iteration of your software or hardware, you need to
have a good understanding of how it is likely to perform—and whether this
performance is acceptable for a system that will be running in production. There
are various methods of estimating performance in the lab (one such method is
discussed in “Performance Calibration” on page 337)—you should make use of
them wherever possible before deploying to the field.

If an iteration doesn’t perform well in the lab, it’s definitely not likely to perform
well in the field. What’s more, measuring performance can be much harder in
a real-world context, since labeled data is rare, so you should take advantage of
every mechanism for predeployment testing.

Document possible risks
Each time you take a new iteration into production, you’re introducing some
risk. Before you deploy, it’s important to try to identify any possible risks,
understand their impact, and think about how you might mitigate or recover
from them.

Deploying Edge AI Applications | 339

If things go badly enough, you may need to halt the deployment or shut down
the project to avoid causing harm. Based on the risks, you should put together a
set of termination criteria (see “Termination Criteria” on page 354) that will help
you know when to make the call.

Determine recovery plan
If something bad does happen as a result of deployment, you’ll need a plan
for recovering from it. This might mean rolling back to an earlier version of
the system, or it could mean repairing some harm that has been caused to the
processes you are interacting with.

Being prepared ahead of time will allow you to take more calculated risks without
fear of disaster. You should have a plan for dealing with the consequences of all of
the possible risks you have identified.

This may involve making use of the strategies for graceful degradation that you
have designed into your application (see “Graceful Degradation” on page 291).

Deployment design
Based on your objectives, you’ll need to design a strategy for deploying your
work. For example, you may have to decide what version of your software and
hardware to deploy, how many devices to deploy to, and to which specific places
to deploy. You’ll also need to figure out any automation that is necessary to
reduce the time taken for deployment and to ensure consistency across devices.
IoT device management platforms may help here.

For example, if you have devices located in multiple factories around the world,
you might decide to deploy your latest software to a single factory for testing in
order to isolate any risk. Alternatively, you could deploy to a few devices in each
factory in order to get a cross-section view of how it performs across a diverse set
of contexts. The best strategy depends on your particular situation, and figuring
it out will require business and domain expertise.

If planning a widespread deployment, it’s always a good idea to perform a staged
rollout: start with a small subset of devices, see how it goes, and then deploy the
remainder in waves. This will keep risk to a minimum and allow you to more
easily recover if something goes wrong.

Review alignment with values
Any software or hardware that you ship must go through a detailed review for
potential ethical issues. It’s important to analyze any changes that have been made
since the last deployment, in case they introduce novel concerns. In addition,
your deployment plan itself should be subject to ethical analysis that incorporates
domain expertise.

340 | Chapter 10: Evaluating, Deploying, and Supporting Edge AI Applications

For example, if planning a staged rollout, it is worth considering whether the
rollout is being done over a representative population of users. You may miss
issues affecting some groups of users if they are not represented in the initial
stages of the rollout.

Communication plan
It’s critical to communicate any changes to a production system before, during,
and after the deployment. By creating a plan for communication, you can ensure
that this happens effectively. Your goal should be to make sure that anyone who
might be affected by the deployment, including by any potential unintended
issues captured in your risk documentation, is aware of the planned action,
its risks, and any role they may have to play. This includes stakeholders and
members of your development team.

Communication should go in both directions, since there may be factors you are
unaware of that might affect your deployment plan. For example, you may find
out about scheduled activities that might overlap with your planned deployment
and influence the metrics you are trying to measure.

Go/no-go decision
Once all of the appropriate documentation has been assembled, the final step
is to review it and make a go/no-go decision. You may determine that the level
of risk is too high, or that some confounding factor means that the deployment
should be delayed. Otherwise, you may make the call to go ahead.

It’s important that the go/no-go decision involves input from stakeholders,
domain experts, and your technical team, since all of them have insight into
potential issues that are important not to overlook.

Mid-Deployment Tasks
These are tasks you should consider while the deployment happens, in addition to the
mechanics of the deployment itself:

Two-way communication
You should communicate clearly with anyone who might be affected by the
deployment, according to the plan created in your predeployment tasks. This
includes listening out for any potential issues that might happen during the
deployment and be noticed by people working adjacent to it.

Staged rollout
To keep risk to a minimum, deployment should be conducted in stages rather
than all at once. Coordinating this staged rollout is a major task. The most
important aspects are keeping track of what has been deployed where, and
monitoring how each stage might be impacting the metrics you are tracking.

Deploying Edge AI Applications | 341

In some cases, you may already have devices in the field that can’t be updated. For
example, they might not be capable of firmware updates. If this is the case, you
need to be very careful about keeping track of which devices have which version
of the firmware and your algorithms.

Monitor metrics
You’ll need to keep track of all your key metrics during deployment—and be
prepared to halt or roll back the process if things are not going well. Based on
your predeployment work, you should have an understanding of your expecta‐
tions regarding how the metrics you are monitoring will change. If you observe
something different, it’s a good idea to pause the deployment and investigate
what is happening. If it looks like something harmful has occurred, you should
roll back to an earlier state and fix the issue.

One of the core goals of a responsible AI workflow is to prevent
any harm from being caused. One of your jobs is to anticipate the
potential for harm in advance and create a design that prevents it
from happening. While unexpected things may happen, an unanti‐
cipated instance of harm means that your ethical review process is
broken.

Postdeployment Tasks
The work doesn’t end immediately after completing a staged deployment. Here are
some tasks that you may need to attend to afterward:

Communicate status
In line with your communication plan, you should make sure that everyone
affected is updated with the status of the deployment after it has happened. They
should also have a clear, continuously open channel via which to alert you of any
unexpected changes they observe in the system.

Postdeployment monitoring
It’s wise to keep monitoring a system for some time after deployment has conclu‐
ded. There may be effects that show up with some delay. Ideally, these types
of risks will have been identified during your risk documentation process with
the help of a domain expert. There’ll be more information about monitoring in
“Postdeployment Monitoring” on page 343.

Deployment report
After deployment, you should create a written summary report that includes
your original plans, what actually happened, and any actions that were taken.
This report will help guide future deployments, and can be shared with
your stakeholders.

342 | Chapter 10: Evaluating, Deploying, and Supporting Edge AI Applications

This may all sound like a lot of activity—but by being systematic about deployments
and documenting everything you do, you are less likely to suffer from unexpected
issues. Over multiple deployments of the same project, you will begin to develop
an efficient system that requires minimal work and is described by a solid set of
documentation. This system will be an important part of the ongoing support of the
project.

Supporting Edge AI Applications
Deployment marks the beginning of the support phase of your project. All tech‐
nology projects require long-term support. From an edge AI perspective, support
involves keeping track of the performance of the system over time. If you see per‐
formance change, you can take action—ranging from updating your algorithms to
terminating the deployment.

It’s important from an ethical perspective that projects are well supported. If a project
is abandoned, or left to limp along without proper monitoring, it may end up causing
harm. Drift (as seen in “Drift and Shift” on page 233) can transform a convenient
gadget into a dangerous trap. If you aren’t able to commit to proper long-term
support of your project, you shouldn’t launch it in the first place.

Since edge AI hasn’t existed for very long, support is the least developed component
of the workflow in terms of tools and best practices. Some of the best practices
from server-side AI can be applied to edge problems, but many of them can’t. The
remainder of this chapter will explore the challenges and opportunities in this space.

Postdeployment Monitoring
The first part of long-term support is monitoring. As soon as the first prototypes
of your hardware are deployed, you’ll need to begin collecting data on how they
are operating. This can be a big challenge, since sometimes you won’t even have
connectivity with devices.

Here are some possible scenarios:

• There’s good internet connectivity with deployed devices, so it’s possible to gather•
statistics and data samples from the field. For example, a connected appliance
may be able to use home WiFi to send back large amounts of data.

• There is enough limited connectivity to obtain basic statistics and metrics, but•
not enough to sample data. For example, a smart sensor deployed on a remote oil
well may be able to send a few bytes of data via LoRaWAN, a technology for long
range, low power wireless communication.

Supporting Edge AI Applications | 343

• There’s no connectivity, but user feedback is available. For example, the user of•
a smart wildlife camera can provide feedback on whether it photographs the
correct animals.

• There is no connectivity and user feedback is not available.•

As you can see, connectivity and the ability to obtain feedback can vary a lot between
applications. Ideally, there’s at least some connectivity: you should think twice about
deploying in a context where there is no way to gather feedback whatsoever, since it
means you’ll have literally no idea how your system is performing.

Assuming you have some mechanism for feedback, the goal should be to collect as
much information as possible about what is going on.

Types of feedback from deployed systems
Server-side ML applications have it easy. Since all of their input data is available on
the server, it can be logged and stored for later analysis. For example, imagine a
server-side application that uses computer vision to identify specific products from
photographs.

Since it is on a server, it has effectively unlimited storage to keep records of the
photographs people upload. This means that the developers can go through and
analyze the model’s predictions, determine whether they are effective, and even label
the data and use it for training.

Some applications have it even easier: there’s a built-in measure of success. For
example, if you build an algorithm to recommend products that users might like, you
can measure its effectiveness by counting how often a recommended product was
bought.

These tight feedback loops allow for iteration and rapid improvement on algorithm
and application design. But things are not so easy on the edge. We typically lack
direct insight into outcomes—although not always. We also have less ability to keep a
record of the model’s inputs. Due to this lack of immediate feedback, we have to come
up with some clever ways to understand what is going on.

Data samples. In an ideal situation, we can collect samples of raw inputs and send
them back to a server for storage. This is only possible when the stars align: we need
a perfect combination of energy availability, connectivity and bandwidth, and a use
case where privacy is not important.

For example, imagine we’ve built a low-power sensor that is designed to monitor how
packages are treated during shipment. To save energy and cost, it may lack the ability
to store or transmit data during transit. This means it has no way to send samples of
raw inputs back for analysis.

344 | Chapter 10: Evaluating, Deploying, and Supporting Edge AI Applications

As another example, imagine we’ve built a home security camera that uses a deep
learning model for person detection. If the product is marketed as using edge AI to
preserve privacy, it won’t be feasible for us to capture samples of its input.

However, there are certainly situations where enough energy and connectivity are
available for sending samples of data. And even if resources are scarce, there are still
ways you can make it work.

Some applications are able to create a feedback loop by sampling limited amounts
of data. Rather than try to send every input to a server, they pick specific instances.
This could be at random (e.g., every one in a thousand), it could be periodic (e.g.,
once per day), or it could be based on some intelligent criteria. An interesting way
to approach this is to identify when your algorithm is uncertain about an input—for
example, when none of a classifier’s classes meet the confidence threshold—and send
those inputs. Since they’re the ones the model appears to be struggling with, they may
be the most useful to analyze.

What Do You Do with Sampled Data?
Samples of data sent back from the edge can be used for a few different things. First,
they can be used to better understand real-world performance. Being able to see
samples of data directly from the field gives us insight into whether our dataset is
truly representative, and it helps us detect data-related problems such as drift.

A second reason this data is valuable is for debugging algorithms. For example, if
our algorithm is uncertain about a data sample, it can be useful to try to figure out
why, and to fix the problem. It may be that our training dataset doesn’t have enough
examples of similar images—so seeing the image can help guide more data collection.
Or it may be that the algorithm inherently doesn’t perform well on certain types of
inputs, in which case we may need to think of ways to improve it.

A third reason to sample data is to add it to our dataset. This can be especially
effective if we’re collecting samples that the algorithm is not confident about, because
those “hard examples” are especially helpful in both evaluating our algorithm’s perfor‐
mance and in training effective machine learning models.

Another way to record some data while limiting energy and bandwidth usage is to
downsample it first. For example, a raw image could be reduced in resolution before
sending, or a time series could be reduced to a lower sample rate. Downsampling does
throw away some information, but often the remaining information is still enough to
allow for debugging (if not full training).

For example, a successful edge AI–powered trail camera sends thumbnail images of
animals back to a server via a satellite connection. It would be too expensive to send

Supporting Edge AI Applications | 345

full images, but thumbnails can still give valuable insight into what is going on in
the field.

If downsampled data is still too heavy, you might choose to send only parts of the
data. For example, you could send grayscale images instead of color. It can also be
interesting to send aggregate statistics about inputs: for example, you might send a
periodic moving average of a time series rather than the entire thing. This can help
with detecting drift.

Often, your algorithm will use a fixed pipeline of signal processing algorithms before
feeding the data into a model. In this case, since you know how the signal processing
algorithms will behave, it’s likely to be perfectly fine to send the processed data rather
than the raw input. The processed data is typically smaller and therefore easier to
transmit.

You may not be able to transmit much data once you’re fully in production, but you
shouldn’t let this stop you from accessing real-world data during the initial stages
of your deployment. For example, you might decide that it’s worthwhile to pay for
some expensive connectivity (via cellular or satellite modem, for instance) for the
first couple of months of deployment so that you can gather feedback and use it to
improve your system.

Another alternative way to obtain data is via sneakernet—have devices log data
to local storage, then walk out and pick them up every so often. Like paying for
expensive connectivity, this might not be scalable across an entire deployment—but
it’s certainly doable for some devices, or during a specific period of time.

Distribution changes. As we learned in “Drift and Shift” on page 233, the real world
changes over time—but our dataset only represents a snapshot. If it turns out our
dataset is no longer representative, we have a problem and we need to know about it.

The best way to do this is to collect a new dataset that represents current conditions,
then compare it to our existing one. Unfortunately, collecting and labeling a dataset
is extremely labor intensive, and—as we’ve seen—it’s not often feasible to send actual
data samples back from the field.

Instead, we need some mechanism for understanding whether the real-world data
still resembles our dataset: whether its distribution has changed. If we see the distribu‐
tion change more than a little, chances are that there has been some drift and we will
need to account for it.

The simplest way of identifying drift is to calculate summary statistics for our dataset,
compute the same statistics on-device, and compare them. Summary statistics are
numbers that represent a group of measurements in aggregate. For example, you
might calculate the mean, median, standard deviation, kurtosis, or skew of readings

346 | Chapter 10: Evaluating, Deploying, and Supporting Edge AI Applications

https://oreil.ly/Bby0S
https://oreil.ly/SbIKi

8 These are just a few summary statistics; there are many more choose from.

for a particular sensor.8 You can even look at the amount of correlation between
readings from multiple sensors. If the values are different between your dataset and
what the device collects in the field, you may have a problem.

Summary statistics can only identify the simplest of changes in distribution. There
are also some more sophisticated statistical tests that can analyze samples from two
populations and determine how much they differ. Examples of some of these algo‐
rithms can be found in the documentation for Alibi Detect, which is an open source
library for drift detection (among other things). Unfortunately, many of these meth‐
ods struggle with high-dimensional data such as images and audio spectrograms.

At the time of writing, there is still a great deal of work that needs to be done to
understand the best drift detection approaches for use on edge devices. Today, drift
detection is most commonly achieved by the use of anomaly detection algorithms
(as seen in “Anomaly detection” on page 99). An anomaly detection model is trained
on the training dataset, then run on-device on every new input. If a high proportion
of inputs are classified as anomalous, there may be drift occurring. End-to-end
platforms typically have some features that can help with this.

It can be interesting to monitor distribution changes in both the input data—for
example, images, time series, or audio collected from sensors—and the output of
algorithms, such as the probability distributions produced by a classifier. Distribution
changes in the output can be a downstream sign of drift. For example, maybe the
balance of classes is different in real-world data. This may be a sign that you should
improve your dataset.

In addition, output distribution changes can notify you of bugs and errors in your
algorithms or application code. For example, if you notice after an update that your
model is always predicting the same class, perhaps a bug was introduced. Issues are
usually more subtle than this, but it’s always good to track the distribution of both
inputs and outputs.

There are two ways you can use information about potential distribution changes.
If you have access to some connectivity, you may be able to transmit distribution
data to a central server for monitoring and analysis. It will allow you to have at least
somewhat of a feedback loop with what is going on in production.

If you don’t have any connectivity at all, you can still potentially use measures of
distribution change to control application logic. For example, you might choose to
reject any inputs that fall outside of the expected distribution. This can help prevent
your application from making decisions based on input that its algorithms were not
designed or trained for.

Supporting Edge AI Applications | 347

https://oreil.ly/bSlZu

If you are noticing distribution changes, the best course of action is typically to
collect more training data and use it to improve your algorithms. We’ll learn more
about this workflow in “Improving a Live Application” on page 350.

Application metrics. Beyond the raw inputs and outputs of your model, it’s a great idea
to keep track of what your application is doing by storing or transmitting some logs.
This might include things like:

System logs
For example, when the device was started, how long it has been running, power
consumption, and battery life

User activity
Includes actions taken by a user, buttons pressed, or data entered

Device actions
Things the device has done on its own, such as producing output as a result of an
algorithmic decision

Back in “Artificial Intelligence” on page 6 we decided that the definition of intelli‐
gence is “knowing the right thing to do at the right time.” Application metrics help
us understand if this statement applies to our system once it is deployed in the
field. By examining the relationships between different types of events, we can try to
determine if the device is being used in the ways we anticipated. If it is not, there may
be a problem.

For example, imagine we have built an edge AI microwave that can determine the
best cooking time for a dish using computer vision. Our analysis of application logs
might show that users are consistently running the microwave slightly longer than the
estimated cooking time. This is a sign that our application may not be doing a good
job and should be investigated further.

If you’re able to access logs from multiple devices on a central server, you can do
high-level analysis that looks across all of the devices. But depending on your level
of connectivity, you may not be able to transmit full sets of logs—or even any logs at
all. However, you may be able to send some form of summary statistics that describe
what is occurring in your logs.

For instance, you might decide ahead of time that it is worth knowing whether the
user is running the microwave longer than recommended. You could then send that
specific information back for analysis without needing to upload an entire set of logs.

If you can’t upload any data, you can always log it on-device anyway: you may be able
to obtain it by collecting the device and physically downloading it. It may be helpful
to compress logs for storage on-device, or to make transmission easier.

348 | Chapter 10: Evaluating, Deploying, and Supporting Edge AI Applications

Outcomes. Most edge AI systems have goals that go beyond what happens on the
device itself. For instance, a product may be designed to reduce the cost of an indus‐
trial process, encourage a user to stay fit, or improve the quality of an agricultural
product.

With this in mind, it’s essential to track the outcomes of whatever processes your
system interacts with. This will help you understand whether your project is having a
beneficial effect.

Measuring and interpreting the impact on outcomes requires deep domain expertise.
The process needs to start before the system has been deployed: you’ll need to
measure the current outcomes of the system so that you have something to compare
it to. This should already be part of the initial stages of your project.

You can also monitor outcomes as part of a staged deployment. If you deploy in some
places and not others, you’ll hopefully be able to measure the difference in results:
the places where deployment has yet to happen will act as a control. That said, you
should make sure that you account for any other factors that may cause differences
between different locations.

The nice thing about outcomes is that you can measure them without needing any
access to devices once they have been deployed. The downside is that there’s typically
a delay between deployment and results, which can make for a less effective feedback
loop. It’s also harder to account for the impact of external factors.

User reports. If users interact with your product, or the systems it impacts, you can
potentially survey them for feedback. This can be a great source of feedback, since
users are the first people who will notice any benefits or issues.

It’s important to collect user feedback in a structured way, and to acknowledge that
there are many factors that can lead individuals to come to different conclusions
about the same situation. As such, aggregate feedback from many individuals is likely
to be more reliable and actionable than feedback from just a few. If you don’t have
experience collecting user feedback, it’s a good idea to work with a domain expert
who does.

It’s worth noting that users are not always honest. Employees may feel uncomfortable
providing negative feedback on a major project, or they may find themselves in a
position where they have an incentive to resist the deployment: for example, if they
feel like the project is impacting their job in an undesirable way. These are completely
valid and understandable reasons, and it’s important to be sensitive to them.

Supporting Edge AI Applications | 349

Improving a Live Application
The iterative development process doesn’t stop when you deploy, but it certainly
changes. Once you have devices running in production, you lose some flexibility in
making modifications. Depending on your project, there may be technical constraints
that prevent you from updating your application once it has been deployed. And even
with the ability to make changes, you may need to be conservative to avoid disrupting
the user experience.

Solving problems using feedback
The types of feedback collected during monitoring (see “Postdeployment Monitor‐
ing” on page 343) can be put to good use in identifying and solving problems.
There are multiple types of feedback, and they each focus on different aspects of the
solution:

• Data samples give us insight into the evolving state of real-world data.•
• Distribution changes also provide insight into real-world data, and they can also•

help us identify issues within our algorithmic pipeline (via monitoring output
distribution).

• Application metrics give us a way to understand the high-level operation of our•
system at a technical level.

• Outcomes help us understand how the system is behaving holistically—and•
whether it is solving the problems it is intended to.

• User reports provide further evidence of the overall health and utility of our•
product.

By collecting feedback across all of these axes, you should be able to home in on the
cause of any issues. For example, your outcomes data may indicate that the system
is not making a positive impact on the problem it is trying to solve. To investigate,
you might take a look at the change in input and output distributions. If the input
distribution is the same as in your dataset but the output distribution is different
from what you observed during development, there may be a problem with your
algorithm’s implementation on the device.

It’s important to observe changes in the aspects you are monitoring over time.
You might find that there are cyclic changes in input distribution, due to seasonal‐
ity (see “Representation and Time” on page 227), which need to be factored into
your application.

350 | Chapter 10: Evaluating, Deploying, and Supporting Edge AI Applications

9 If you anticipate wanting to collect data from the field, it needs to be part of the terms of service of your
product, and you must verify that a customer has agreed to it.

Re"ning an algorithm over time
All environments experience drift, and you’ll almost certainly have to improve your
system over time in order to keep up. In addition, since the field of edge AI is
still rapidly evolving, it’s very likely that new algorithmic approaches may become
available over the course of your deployment.

The task of improving your algorithms is just an extension of the workflow you’re
familiar with from development. It’s an iterative process, driven by data. Hopefully,
by deploying to the field you’ve developed a better understanding of the conditions
that exist in the real world. For example, monitoring differences in model output
distribution may have alerted you to the fact that a different class balance exists in the
field than in your dataset.

Even if you’ve gained no such information, your predeployment evaluation has hope‐
fully informed you of the weak spots in your system’s performance. For example,
perhaps your application is underperforming for some subgroups of the overall
population.

You can use this information to improve your dataset. If you’re lucky, you may be able
to obtain data directly from the field—although this may be restricted by technical or
legal obstacles.9 At the very least, you hopefully have some awareness into the parts
that need improving: maybe you could benefit from better diversity, or by increasing
the number of examples of a particular class.

The same applies to algorithms. If you think another algorithm might work better,
you can explore its potential in much the same way you would in the initial develop‐
ment process. The difference is that you now have a live production system to com‐
pare against. You might even choose to deploy two different versions of algorithms on
different devices in order to collect data on which seems to perform better.

Active Learning in Production
We encountered the concept of active learning in “Semi-supervised and active learn‐
ing algorithms” on page 237 as a way to guide the curation and labeling of datasets.
It’s reasonable to think of the interaction between a deployed system and the algo‐
rithm development process as an active learning loop. Feedback from production is
used to determine which types of samples are prioritized for collection as the dataset
is extended, and new samples can potentially even be sourced from production
devices (for example, samples that are not classified confidently could be uploaded to
a server).

Supporting Edge AI Applications | 351

This guided evolution of dataset and algorithm can be powerful. However, it does
come with some risks. The active learning process may inadvertently reinforce bias
in the system by guiding dataset collection in a direction that results in a model that
works better for some types of inputs than others. It’s very important to make sure
outcome-related feedback is also considered, so that the performance of the system as
a whole is used to gate potential improvements.

Once you have an improved algorithm or application, you’ll need to deploy it. As
with most things in edge AI, this isn’t always as simple as it sounds.

Supporting multiple deployed algorithms
Deploying server-side code can be as simple as pressing a button, with the latest ver‐
sion being immediately available to all users. Edge deployments are—unfortunately—
a lot more complicated.

AI is often deployed to the edge as a way to work around challenges with connectivity
and bandwidth. These challenges can make deployment tricky. In a multi-device
deployment, it’s not necessarily possible to push the latest version of your application
down to every edge device at the same time. Even if you have enough bandwidth,
some devices may be unavailable: powered down or offline. And in some cases, by
design or by accident, there’s simply no way to update a device once it has been placed
in the field.

The situation is amplified by the way that edge AI applications are developed and
deployed. A staged deployment within an iterative workflow will naturally result in
many different combinations of hardware and software out in the field, and even
after the initial rollout, new devices being placed in the field will likely feature newer
versions of hardware and software than what is already there.

This means that at some point you are likely to end up with a range of application
versions in production at the same time. In fact, there are several entities that may
have different versions:

• The device hardware itself•
• The application firmware running on a device•
• The algorithm implementations or models within the firmware•
• The datasets used to train any machine learning models•
• Any backend web services that the device connects to•

Since it’s unlikely you can update all of these at the same time, there’s a huge number
of potential different combinations of artifacts that may be deployed in the field at
any given moment. Keeping track of them is extremely important. If you don’t have a

352 | Chapter 10: Evaluating, Deploying, and Supporting Edge AI Applications

good record of what is deployed where, you’ll lose the ability to debug your system. If
every device has a different mixture of components and you aren’t sure what they are,
it’s very hard to figure out the root cause of a performance problem.

To permit debugging and traceability, you’ll need a system for tracking which ver‐
sions of each component are deployed in a given place. For example, you might
maintain a database that is kept up to date every time you update firmware or
create a new hardware iteration. This functionality can be provided by IoT device
management software.

When monitoring metrics, you’ll need to associate them with the records in your
device management platform so that you can understand which components might
be in need of attention.

Managing many different versions concurrently can be a nightmare, so it’s in your
interest to try to limit the combinations currently in use. If your devices connect to
a backend, one way to enforce relative uniformity is to require a minimum firmware
version. The drawback is that this may impact the robustness and usability of your
system.

Ethics and Long-Term Support
The world and our applications are continually evolving, so it’s important to continue
to analyze our systems from an ethical perspective as long as they are still in use.

Here are some of the ethical issues that can affect a deployment in the long term.

Performance degradation
This chapter has introduced some techniques for monitoring and improving perfor‐
mance over time, which will naturally degrade as drift occurs. Unfortunately, the
reality is that most deployments will have a finite useful life. At some point, either
the drift will be too much to overcome, or the budget will not allow for the necessary
maintenance.

For example, imagine a system designed to identify manufacturing defects. Over
time, changes to the manufacturing process may produce different types of defects. If
the system is not updated, the new defects won’t be caught—potentially resulting in
safety hazards.

A machine learning model doesn’t necessarily know when it is being fed inputs that it
wasn’t trained to handle. Instead, it’ll continue to produce an output—which may be
completely wrong. If someone is depending on your application to do the right thing,
this can be disastrous. If you are no longer supporting the hardware, there may be no
way for anybody to know that there is a problem—beyond the fact that some harm is
being caused.

Supporting Edge AI Applications | 353

This raises the question: what happens to projects that have exceeded their useful life‐
span? The truth is that it isn’t ethically acceptable to just abandon a project. Instead,
you need to plan for what will happen in the event that it becomes unworkable. A
responsible design covers the entire life cycle of your project, from cradle to grave.

For edge AI projects, this includes the hardware component. For example, you may
need to have a plan to deal with harmful materials contained within hardware devi‐
ces, such as lithium batteries. Is your hardware sustainable, or will it create problems
of its own?

Termination Criteria
Every project that is deployed in production should be subject to termination criteria:
a list of potential issues that would result in the deployment being halted, at least until
the issues can be resolved.

A set of termination criteria might include the following:

• A maximum amount of drift in distribution versus the project’s dataset•
• Predicted impact on any associated systems, along with tolerance thresholds for•

deviation
• Minimum standards for successful business metrics•

By coming up with this list ahead of time, you’ll be prepared to act quickly if things
do not go well. These termination criteria should be reviewed on an ongoing basis
and updated if new information comes to light.

If termination needs to happen, you can hopefully rely on the graceful degradation
capabilities of your product that were planned out during the design phase (see
“Graceful Degradation” on page 291).

New information
After deployment, new facts may come to light that may result in an ethical re-
evaluation of a project. Here are some examples:

• The discovery of algorithmic limitations that could be detrimental to fairness•
• The discovery of security vulnerabilities that could be exploited•
• Improvements in the understanding of the problem that expose flaws in an•

application
• Improvements in edge AI techniques that make the current application obsolete•
• Changes in the problem domain that make the current application obsolete•

354 | Chapter 10: Evaluating, Deploying, and Supporting Edge AI Applications

Artificial intelligence is a rapidly moving field, and it’s common for issues to be
discovered with existing algorithms and techniques. For example, adversarial attacks
make it possible for attackers to manipulate machine learning models by feeding
them carefully constructed inputs in order to obtain the output they desire. New
adversarial attacks are often discovered, and there’s a minor arms race as defenses are
invented and defeated.

It’s also common to discover flaws in AI techniques that may lead to compromised
performance. For example, “What Do Compressed Deep Neural Networks Forget?”
(Hooker et al., 2021) showed how popular model compression techniques can lead
to a loss of performance for minority classes. As we learn more about the limitations
of our techniques, we may find that our currently deployed systems have flaws that
make them unsuitable for continued use.

Sometimes, a new discovery will make an existing technique obsolete. In some
contexts, continuing to use the old technique might be considered unethical. For
example, imagine you have a medical diagnosis product that is able to detect a fatal
illness with a false negative rate of 20%. If a competing team creates a system with a
false negative rate of 10%, anyone using your system instead of theirs may have an
increased risk of death since their illness is less likely to be caught. You may have to
consider whether it is ethical to continue marketing your product.

In some cases, new domain expertise may come to light that shows a system is not
fit for purpose. For example, an improved understanding of human physiology might
show that a previously adequate fitness wearable is in fact delivering bad advice to
athletes.

Evolving cultural norms
Society changes quickly, and you may find that a previously deployed application
gradually moves outside of the standards of acceptability. For example, the expecta‐
tions of consumers around privacy is changing over time. Today, consumers are
accepting of smart speakers that send recorded conversational audio into the cloud
for processing—since historically there’s been no other way to perform accurate
speech recognition.

However, as on-device transcription becomes more widespread, it’s likely that con‐
sumers will come to expect it, and will consider the use of server-side transcription an
outmoded concept that violates their expectation of privacy.

It’s worth noting that this phenomenon may also happen the other way around:
previously unacceptable concepts, like smart cameras in private areas of the home,
may become tolerated as we move toward systems where the image data never leaves
the device.

Supporting Edge AI Applications | 355

https://oreil.ly/U4rq5
https://oreil.ly/QlZng

As the custodian of a project, you should work with domain experts to keep track of
cultural norms and make sure that your application does not violate them.

Changing legal standards
Legal standards tend to follow in step with cultural norms. For example, as privacy
expectations have evolved on the web, laws like the European Union’s General Data
Protection Regulation have been drawn up to regulate the way that companies handle
private information.

Whatever area you are operating in, you should work with domain experts to under‐
stand your legal obligations and ensure that you are handling them ethically.

Bear in mind that law and ethics are not necessarily the same thing.
In some situations, you may be legally required to do things that
are not compatible with your ethical standards. For example, some
companies have been pressured by governments to hand over the
keys to encrypted user data. Bear this in mind when designing your
application.

What Comes Next
Our discussion of long-term support concludes the final theory section of this book.
Congratulations on making it this far!

In the next three chapters, we’ll see everything we’ve learned in action. Each chapter
provides an end-to-end application of the edge AI workflow to a practical use case,
starting with an idea and ending with a product.

We hope these chapters are both informative and inspirational. By the end of the
book, you’ll be ready to apply these principles on your own.

356 | Chapter 10: Evaluating, Deploying, and Supporting Edge AI Applications

https://oreil.ly/EBy2O
https://oreil.ly/EBy2O
https://oreil.ly/dIEyE

1 See National Wildlife Federation article “Habitat Loss”.

CHAPTER 11

Use Case: Wildlife Monitoring

Now that we understand the basics of developing machine learning models for
edge applications, the first realm of use cases we will cover is related to wildlife
conservation and monitoring. We will explore possible problems and their associated
solutions for each use case chapter in this book via the development workflow
outlined in Chapter 9.

There is a rapid decline of threatened species worldwide due to various human
civilization impacts and environmental reasons or disasters. The primary drivers of
this decline are habitat loss, degradation, and fragmentation.1 The causes of these
drivers are human activity, such as urbanization, agriculture, and resource extraction.
As a result of this decline, many species are at risk of extinction.

A growing number of AI and edge AI applications are being developed with the aim
of helping to protect wildlife. These applications range from early detection of illegal
wildlife trade to monitoring of endangered species to automated identification of
poachers. As previously discussed in this book, edge AI is used to process data locally
on the device instead of in the cloud. This is important for wildlife conservation
purposes because it can be used to process data in remote locations without the
need for an internet connection. This means that data can be processed quickly and
without the need for expensive infrastructure, helping prevent future poaching and
thus protecting our planet’s most vulnerable species.

When used responsibly, edge AI can and will have an extremely positive impact on
society and our planet. However, technology and AI are what their developers make
of them. They can thus be used for good, or sometimes be used for harmful and
unethical purposes. It is therefore important to be thoughtful about how they are

357

https://oreil.ly/kpOVl

2 See the website, “United Nations AI for Good”.
3 See Google’s site, “AI for Social Good”.
4 See Microsoft’s site, “AI for Good”.

developed and used to ensure that their benefits outweigh their risks. The United
Nations2 and various major technology companies like Google,3 Microsoft,4 etc., are
creating initiatives to utilize their resources for AI for social and environmental good.

One such usage of AI for good is in a well-known and well-researched method
of protecting, identifying, monitoring and tracking endangered species, the camera
trap. Camera trapping is a powerful tool that can be used for a variety of wildlife
conservation research and monitoring purposes. It can be used to monitor endan‐
gered species, study animal behavior, and assess the impact of human activity on
wildlife. This method can also be used to detect and track poachers, as well as to
monitor the health and behavior of endangered species. Camera traps are often used
in conjunction with other methods, such as DNA analysis, to create a more complete
picture of what is happening in an area.

What Exactly is a Camera Trap?

A camera trap is a remotely activated camera that is used to take
photographs of animals in their natural habitat. The camera is
usually triggered by an infrared (IR) sensor that is triggered by the
animal’s movement.

A camera trap is usually confined to a singular location on the ground; camera
trapping is especially useful for large, ground-dwelling animals. So, this method is
most appropriate for only a small portion of the Earth’s species, as camera traps are
not useful for underwater applications, birds in flight, rapidly moving small insects,
etc.

Problem Exploration
The term wildlife conservation is too broad of a concept to tackle in this one chapter
and too large of a problem to be solved with just one machine learning model,
so for the purposes of this book we will focus on wildlife conservation in terms
of protecting specific animal species that are on the IUCN Red List of Threatened
Species.

We also need to explore the difficulty of the problem we are trying to solve: what are
the costs, travel, implementation, and infrastructure or government restrictions that
will inhibit the creation of machine learning models for a nonprofit purpose?

358 | Chapter 11: Use Case: Wildlife Monitoring

https://aiforgood.itu.int
https://oreil.ly/8L3BY
https://oreil.ly/8ZLQI
https://www.iucnredlist.org
https://www.iucnredlist.org

5 Abu Naser Mohsin Hossain et al., “Assessing the Efficacy of Camera Trapping as a Tool for Increasing
Detection Rates of Wildlife Crime in Tropical Protected Areas”, Biological Conservation 201 (2016): 314–19.

Solution Exploration
Since endangered species roam freely, they are difficult to spot by the human eye in
broad daylight or at night. Camera traps are especially useful tools because they allow
humans to track, count, and identify both the endangered animal and/or the animal’s
threats without interference in their natural habitat. Camera traps ultimately allow
animals to be monitored so that they can be protected remotely without drastically
affecting their behavior, movements, environment, food sources, etc.

An important step of protecting these endangered wildlife species is to provide their
human custodians with actionable information. This can come in many different
forms. Goal-wise, we can both generate a machine learning model that can identify
threats to these specific species and alert humans of the threat’s location, or we can
identify, count, and/or track the animal’s location. Both of these approaches accom‐
plish the same goal, giving people the necessary information to protect a threatened
species. However, they require a different combination of machine learning classes
and sensor inputs to be solved.

Goal Setting
Poaching is the illegal hunting, killing, or trapping of animals. Poachers often target
rare or endangered animals for their meat, horns, tusks, or fur. Poaching is a serious
problem that threatens the survival of many wildlife species. Camera traps can be
used to reduce poaching by helping to track the movements of poachers and by
providing evidence that can be used to prosecute them. Camera traps can also be
used to deter poachers by making them aware that they are being watched:

Camera trapping in remote areas can potentially help protected area managers to
increase rates of detection of IHA (illegal human activity) in their conservation
landscapes and increase rates of arrests and prosecutions by providing appropriate
supporting evidence.5

—Biological Conservation article

Camera traps are also an important tool for studying, conserving, and monitoring
endangered species. They allow researchers to collect data on the ecology and
behavior of animals without disturbing them. This information can then be used to
design conservation plans that protect endangered species and their habitats. Camera
trapping also represents a unique opportunity for broadscale collaborative species
monitoring due to its largely nondiscriminatory nature due to the amount of camera

Goal Setting | 359

https://doi.org/10.1016/j.biocon.2016.07.023
https://doi.org/10.1016/j.biocon.2016.07.023

6 From an article by Abu Naser Mohsin Hossain et al., “Pangolins in Global Camera Trap Data: Implications for
Ecological Monitoring”, Conservation 201 (2016): 314–19.

data that is ingested by the device with no other trigger than IR movement; these
trigger movements could be from a wide range of species.6

Solution Design
In order to avoid many ethical dilemmas by creating a machine learning model that
will be used in a camera trap system to monitor endangered species, instead we can
promote the conservation and welfare of endangered species by tracking as well as
monitoring their environment’s other invasive species. Monitoring the location and
abundance of invasive animals in the device’s environment with a camera trap and
relaying this information to the environment’s human custodians promotes the con‐
servation of endangered animals: the local resources and unnatural species intrusions
or unnatural predators will be reduced, allowing the endangered animal’s population
to recover and thrive.

In this book, we are choosing to design and implement a low-cost, efficient, and
easy-to-train camera trap to monitor an invasive animal species of your choice. How‐
ever, a conservation and monitoring trap does not always need to be a camera-based
solution, and by using the principles and design workflow presented in this chapter
and throughout the book, many other types of machine learning models and applica‐
tions can be implemented for conservation and monitoring purposes, including using
audio data to classify animal calls or birdcalls, underwater audio/radar to listen to
ocean sounds and track and identify whales, and more.

What Solutions Already Exist?
Camera traps are already being used for commercial and conservation/monitoring
purposes and have been extensively used since the 1990s. By integrating a movement
sensor onto a camera setup, an outdoor wildlife camera is triggered when any move‐
ment is detected by the integrated movement sensor, resulting in thousands of images
from the viewpoint of the camera’s fixed location over many days or months.

As on-device networking capabilities used to be too power intensive to integrate into
a remote field device, researchers would need to go into the environment where
the device is located to manually retrieve the images from the camera, a sometimes
labor-intensive task depending on where the camera was placed in the wild and how
remote the location was. Once the images were retrieved, it would take weeks or
months for researchers with trained eyes to comb through the images by hand to find
their target species in the photographs.

360 | Chapter 11: Use Case: Wildlife Monitoring

https://doi.org/10.1016/j.gecco.2019.e00769
https://doi.org/10.1016/j.gecco.2019.e00769

By integrating AI into the camera device itself, researchers are now able to dramati‐
cally reduce the time needed to locate their target animal/species since the device now
has a probability reading of animals present for each and every image that is captured
after the movement sensor is triggered. Only the highest probability images are sent
over a network to the researcher’s lab, eliminating the need for a human to physically
go into the field to retrieve the camera’s images manually (a potentially dangerous
task as well, considering the environment) and reducing the man-hours required to
sift through the captured images.

There are specific AI tools that already exist for the purpose of camera trapping,
from automatic specific detection in your unlabeled images or video feeds to data
ingestion tools for the purpose of postprocessing, tracking, and counting species in
the cloud. These tools are very valuable for researchers, and as camera trapping is a
well-researched and widely adapted method there is an abundance of these solutions
available; a simple web search can help you find all of these prebuilt solutions. These
prebuilt devices each have their own positives and negatives, considering that it is
not yet possible to have a singular model that can identify and track all living animal
species on our planet in all environments. We will not go into too much depth on
these preexisting solutions in this chapter, and instead go through the process of
designing and deploying a camera trap on our own for our own local habitats.

Solution Design Approaches
We can take our problem statement and design a solution many different ways, with
the following pros and cons for each approach:

Identify an endangered animal.
If there is a sufficiently big enough dataset available, or enough publicly available
labeled images of the animal, the training/testing datasets will be easy to collate
and the subsequent model will have high enough accuracy for the device’s envi‐
ronment. However, framing the problem this way will potentially allow poachers
and other human threats to easily create a device that is essentially an amazingly
accurate hunting tool, especially depending on the quality of the data used for the
environment the device is in.

Identify an endangered animal’s invasive predators.
In a well-researched environment, there is usually quite a bit of publicly available
data for various regions around the world for invasive species, including invasive
predators, plants, and other wildlife; this type of problem and its solution will
generally be quite beneficial to people trying to increase the chances of success
for endangered animals to replenish their numbers as humans can use the trap’s
data to find and remove invasive threats.

However, it could be hard to determine exactly which invasive species will likely
be in the environment of the endangered animal at any given time, and invasive

Solution Design | 361

https://oreil.ly/RSnfF

species that are detrimental to the animal could be any number of threats,
from humans to other animals or invasive poisonous plant life. So, the problem
statement here could be a bit too broad to protect the endangered animal from all
sides.

Another con of this approach is that it requires the model creator to be aware
that an invasive species model is only useful and ethical if used in an environ‐
ment where the species being identified is indeed actually a verified invasive
species. This requires a good faith effort on the ML model developer’s side to
ensure the creation of their model is indeed of an invasive species in their target
area and requires the developer to try and limit model distribution to zones
where the invasive species is actually not invasive.

This solution will also require the end user to ensure the model is not being used
to overhunt the identified threat, and that it complies with a region’s hunting
rules and seasonal regulations as well as plant foraging/gathering/removal rules,
if applicable.

Identify poachers and their associated threats.
A human/person image identification approach or even a person/object detec‐
tion model is already a widely established area of machine learning model devel‐
opment. Many datasets already exist for the purpose of identifying humans in
view of a camera’s lens for both low-power and high compute–power computers.
However, there are many ethical and security obligations related to the solution
of this problem. The model developer must ensure that the data used in the
training and testing sets represents the usage context and is permitted to be used
under copyright/fair use law.

The resulting model must also only be used for binary classification: yes (there
is a person present in the frame of the camera lens) or no (there is no person
present in the image). This is similar to object detection of human bodies. It
requires a good deal of good faith on the development side to ensure that facial
data, biometric data, and other identifying information is not used or collected.
The developer also needs to ensure that the model adheres to the many privacy
and data laws that apply to the region where the model is to be deployed.

Identify other invasive species.
This approach provides a lot of options in terms of determining which other
species could be a threat to endangered species in your selected environment.
From plants, insects, and other animals, the variations for this type of model
are endless and all go toward the benefit of protecting and ensuring survival of
your designated endangered species. However, there are cons similar to those
encountered when trying to identify an endangered animal’s predators.

362 | Chapter 11: Use Case: Wildlife Monitoring

There are many pros and cons to each type of approach and their resulting solutions;
you need to use your own exploratory methods to develop a pros/cons list for your
chosen solution! A good first step is to brainstorm with a variety of stakeholders and
people that have firsthand experience with your problem and solution. In addition to
these pros/cons there are also many considerations we will need to take into account
to ensure responsible design, which we will discuss later in this chapter.

Design Considerations
To achieve the overarching goal of supporting researchers who study our selected
wildlife species, and/or identifying and tracking invasive species that are a threat to
endangered species in our selected areas, from a technological standpoint, we can
use a wide variety of data sources, including different types of sensors and cameras
(Table 11-1).

Table 11-1. Sensors to accomplish various wildlife conservation goals
Goal Sensor(s)
Counting elephants in the wild Camera
Identify a bird based on its call Microphone
Listen for whale calls in the ocean Microphone, HARPs (high-frequency acoustic recording

packages)a

Listen for threats in an environment (poachers, gunshots, etc.) Microphone
Tracking and identifying poachers Camera, microphone
General nonnative / invasive species control & tracking Camera, microphone, accelerometer, Doppler radar
a See the NOAA Fisheries article, “Passive Acoustics in the Paci#c Islands”.

In all the preceding use cases, a typical machine learning approach, classi"cation,
is used; or by uploading a machine learning–training dataset containing the informa‐
tion you would like to spot in a new, unseen sensor data input stream on the device.
To refresh your memory on various machine learning algorithms, see “Algorithm
Types by Functionality” on page 96.

When choosing your wildlife monitoring goal and use case, you will also need to
take into consideration how easy it will be to collect a large, robust, and high-quality
dataset for training your machine learning model. As we found in previous chapters
(especially in Chapter 7), your model is only as good as the quality of your input data.
If you wish to create a model to identify the birdcall of a rare and endangered bird,
for example, you may not be able to procure a sufficiently large enough dataset to
successfully train a highly accurate classification model.

Refer to “Dataset Gathering” on page 367. Thankfully, in the age of the internet and
widely available research datasets and collaboration projects, model developers are
able to use and acquire many preexisting databases of images to identify a specific

Solution Design | 363

https://oreil.ly/d-yVo

animal species or download freely available research, including various sensor or
audio datasets of the animal’s call, vocalizations, environment chemical footprint, etc.
“Getting Your Hands on Data” on page 215 discusses some of the pros and cons to
this approach of dataset gathering.

Also, consider where the device will be located and what sensors will be required for
the desired environment:

• Device location during initial data collection phase•
• Device location postdeployment•
• Average weather conditions of the device’s location•
• Battery-powered versus USB-powered versus permanent powerline•
• Environmental requirements (i.e., water, fog, dirt, and other environmental fac‐•

tors) that could inhibit nominal usage of the sensor or destroy the device

The device could be located in a very remote field; depending on the use case it may
need more or less processing power, and thus more battery. The device could also
be affixed to a permanent energy line or could be super low power and thus run on
batteries that only need to be replaced once a year or every few years. A permanent
powerline may not be feasible for the use case or target environment.

Consider also communicating the model’s inferencing results back to some cloud
platform. This communication could be energy and power limiting depending on the
type of networking protocol chosen and will affect how long the device can be in the
field without human intervention, battery replacement, etc. If the device is moving
all the time, how will the model need to adapt in order to work well in all of these
environments and situations?

Environmental Impact
Please reread “Building Applications Responsibly” on page 41, and then return to this
section. We will discuss the specific considerations for the solution’s environmental
impact.

Model developers also need to consider how their device will directly impact the
environment it will be placed in. For example, if you were to put a large device in the
rainforest just to track human activity, that device is likely to be inherently invasive
regardless of the measures and attachments used on the physical device; however we
need to consider how many animals or endangered species will be potentially saved
from this device and resulting inferencing data, and then weigh the pros and cons.

364 | Chapter 11: Use Case: Wildlife Monitoring

7 See the article by Paul D. Meek et al., “Camera Traps Can Be Heard and Seen by Animals”.

Other notes and questions to take into consideration include:

• Is the target creature itself invasive to the installation environment?•
• Will the device be invasive in the environment? Device anchoring could inadver‐•

tently negatively impact other species, bugs, bacteria, etc.
• How many humans will be required to physically install the device in the envi‐•

ronment? What travel and installation footprint will result after installation?
(human litter, tracks, destroying other animal’s habitats, etc.)

• How will the device alert the user or cloud system when it has identified the•
target species?

• Where is the device placed, and how often will humans need to physically•
traverse to the device?

We also need to ensure that the device is not emitting lights, sounds, noises, and
chemicals that are not natural or native to the environment that it is placed in. These
factors could cause the animal that you are trying to track to behave abnormally, thus
skewing your data and inferencing results.

Warning! Camera Traps Can be Heard and Seen by Animals7

The developer of the camera trap needs to consider the following
ways the device can be intrusive in the animal’s environment:

• Auditory intrusions•
• Olfactory intrusions•
• Learned association•
• Visual (day)•
• Visual (night)•

In another vein of environmental impact, the camera trap may also cause an ethical
dilemma if used for detecting poaching activity, and could cause direct, negative
impacts to the local people of the lands we are trying to protect. There are reports
that antipoaching initiatives have been used by governments to exclude local minori‐
ties from areas they’ve traditionally lived and gathered food in.

Any AI that’s designed to highlight people for punishment has a high risk of abuse,
because it can be used in ways the model developers didn’t intend, for example, a tribe
being evicted from their village, and the government placing “antipoacher” cameras
to make sure they don’t come back, or an authoritarian regime using them against

Solution Design | 365

https://doi.org/10.1371/journal.pone.0110832

8 See this article in #e Guardian: “Report Clears WWF of Complicity in Violent Abuses by Conservation
Rangers”.

9 “Thai Squirrel,” Dutch Food Safety Authority, 2022.

rebels. This capability being provided by Western organizations also echoes a lot of
harmful technology transfers that have happened over the years.8

Bootstrapping
For this chapter, we will implement a solution that is geared toward “identifying
an endangered animal’s invasive predators” (see “Solution Design Approaches” on
page 361) and design a model that will detect and classify the animal Callosciurus
"nlaysonii (Finlayson’s squirrel), also known colloquially as the “Thai squirrel,” which
is a certified invasive species in the Netherlands according to the European Union
list as of August 2, 2022. The author of this chapter is a resident of the Netherlands;
thus, a certified Netherlands invasive species has been chosen as an example for
this use case. Once we have collected our dataset with our target trap animal, we
will also add another class of data for general environmental images that do not
include Callosciurus "nlaysonii. These two classes will allow our image classification
machine learning model to identify when the camera is triggered by movement
in the environment: the camera takes an image and the trained machine learning
model inferences and determines where the Callosciurus "nlaysonii is present in the
environment. The resulting image, if it includes our invasive species, will be sent over
our selected network connection for further processing by a human or in the cloud.

According to the Dutch government and the European Union:

In Italy, the Thai squirrel (Callosciurus "nlaysonii) strips the bark of trees, increasing
the chance of infestation by fungi and invertebrates. In its native range, the Thai
squirrel is considered a frequent predator of bird eggs, but there is no information
known about such an effect in areas where this squirrel has been introduced. Stripping
bark from trees is mentioned as a negative effect on ecosystem services. This can be
significant for both individual trees and entire production forests. Stripping the bark
can also lead to secondary contamination with, for example, fungi. A result of this is
felled trees in Italy.9

366 | Chapter 11: Use Case: Wildlife Monitoring

https://oreil.ly/JQ2tE
https://oreil.ly/JQ2tE
https://oreil.ly/JRz_2
https://oreil.ly/fSbmw
https://oreil.ly/fSbmw
https://oreil.ly/v1XZh

De"ne Your Machine Learning Classes
Table 11-2 shows potential combinations of use cases, sensor and data input types,
and machine learning classes one would use to collect and label their training and
testing datasets. The use cases and their associated class labels are important for
the type of machine learning algorithm we’re employing in this chapter, specifically
“classification.” You can learn more about this in “Classification” on page 96.

Table 11-2. Machine learning classes for various use cases
Use case Training data Class labels
Camera trap Images Target animal, background environment (with or without other

animals)
Audio trap Microphone data Target animal call, ambient environment noise, “other” animal

calls that are NOT the target animal’s call
Animal object
detection

Images (with bounding boxes) Target animal

Motion trap Accelerometer, radar, or other
spatial signals

Movement of desired animal

Chemical trap Gas signals Ambient environment, target species chemical signature

In this chapter, we will select and build upon the traditional camera trap use case for
machine learning image classification using transfer learning techniques, answering
the question, “Is my target animal present in the field of view of the camera?” Our
project’s machine learning classes will be “target animal” and “background environ‐
ment (with or without other animals),” or more simply, “unknown.”

Dataset Gathering
For technical and specific information about how to gather a clean, robust, and useful
dataset, see “Getting Your Hands on Data” on page 215. You can also utilize various
strategies on how to collect data from multiple sources to create your own unique
dataset for your use case:

• Combining public research datasets•
• Combining no-animal-present environment images from multiple public data‐•

sets with a dataset of labeled images of the target trap animal
• Using existing massive image datasets like COCO (common objects in context)•

Dataset Gathering | 367

Sourcing Publicly Available Image Datasets

You can always use a dataset from a seemingly nonrelevant source;
for example, if your target invasive species lives in Portugal but
there is not an abundance of labeled image datasets for your target
species in that environment, you can find research datasets for
other Portugal species and use their data as “nontarget invasive
species” in your training/testing dataset. Your target invasive spe‐
cies could possibly even be present in those images, which your
model can identify after training, without the original dataset
developer’s knowledge!

Edge Impulse
The Edge Impulse Studio is a freely available cloud-based platform containing all
the tools and code required for the entire end-to-end machine learning pipeline,
including collecting and labeling high-quality training/testing datasets, extracting
your data’s most important features using various digital signal processing techniques,
designing and training your machine learning model, testing and validating your
model for real-world performance/accuracy, and deploying your model in various
library formats with the easy-to-use Edge Impulse SDK. For this chapter, and the
subsequent use case chapters in this book, we will use the Edge Impulse Studio to
reduce our model development time and the amount of code we will need to write
in order to achieve a full edge machine learning model development pipeline process
and subsequent deployment.

For further justification for using Edge Impulse for edge machine learning model
development, review “End-to-End Platforms for Edge AI” on page 162.

To follow along with the rest of the instructions in this chapter, you will need to
create a free Edge Impulse account.

Public project
Each use case chapter of this book contains a written tutorial to demonstrate and
achieve a complete end-to-end machine learning model for the described use case.
However, if you would like to just get straight to the point and see the exact data and
model that the authors have developed for the chapter in its final state, you may do so
by navigating to the public Edge Impulse project for this chapter.

You may also directly clone this project, including all of the original training and
testing data, intermediate model information, resulting trained model results, and all
deployment options by selecting the Clone button at the top right side of the Edge
Impulse page (see Figure 11-1).

368 | Chapter 11: Use Case: Wildlife Monitoring

https://edgeimpulse.com
https://oreil.ly/DP1gJ

Figure 11-1. Clone Edge Impulse public project

Choose Your Hardware and Sensors
In this book, we try to remain as device agnostic as possible, but we also need to
discuss how one can use an off-the-shelf, easy-to-use development kit to create this
use case’s solution, since we are under the assumption that the tutorial outlined in
this chapter will most likely be used for an ethical, nonprofit purpose, meaning that
the reader’s potential access to embedded engineering funds, resources, developers,
etc., will be limited. Thus, this book aims to make this hardware selection as easy,
affordable, and accessible as possible.

For a quick and easy data ingestion and deployment option, without having to write
any code, we will both ingest new data and deploy the resulting trained model to
a mobile phone with the Edge Impulse WebAssembly library and mobile client.
For other equally easy deployment devices, Edge Impulse provides a large array of
officially supported platforms, from MCUs to GPUs, of which all include an open
source prewritten firmware available for you to use. If you have a device that is not
listed as an officially supported platform by Edge Impulse, you can still use the device,
but you will need to integrate the deployed C++ library and your device’s driver code
into your application code, just as you would normally during a typical embedded
firmware development workflow.

Platform selection is not as important to this book because we are trying to make sure
that every use case chapter can be realistically solved with almost any physical device
platform (barring any memory or latency constraints). You could solve all of the use
case chapters with a Raspberry Pi and various sensor configurations and still achieve
the same goal discussed here.

However, depending on the use case goal, choosing a Raspberry Pi will force you
to consider the costly power requirements necessary for the Pi to function, but in
contrast, this device selection will potentially be lower in cost and have dramatically
reduced total software development time (for a single field unit; of course, if a

Dataset Gathering | 369

https://oreil.ly/stMSR

10 This article gives some more information: Fischer et al., “The Potential Value of Camera-Trap Studies for
Identifying, Ageing, Sexing and Studying the Phenology of Bornean Lophura Pheasants”.

large number of the same device is required, then a Raspberry Pi + sensor/camera
configuration will likely be more expensive than an MCU/integrated sensor/camera
solution, for example).

Hardware con"guration
There are endless combinations to choose from for your main edge device and
add-on camera attachment. For this chapter, we will remain device agnostic, but
assume that our target device is similar to that of an OpenMV Cam H7 Plus (with
RGB-integrated camera).

This generic setup already implies a few limitations: our camera trap will only reliably
work in daylight; the quality of the input frame image may be too low to accurately
spot all instances of our target animal if the animal is too far away from the lens; your
device may be too battery intensive to live unattended in the field for long periods of
time; and if you are trying to trap an animal with a specific coloring using grayscale,
the input image may yield inaccurate predictions.10

Following is a list of some other camera attachment options and requirements to
ponder in order to improve the accuracy of your wildlife monitoring model for your
specific environment, use case, project budget, and more:

• High-quality cameras•
• Low-quality cameras•
• Infrared, thermal cameras•
• Grayscale versus color (RGB) input•
• Lens focal length•
• Input image pixel density•

Data Collection
Using Edge Impulse, there are many options available to upload and label data in
your project:

Edge Impulse Studio uploader
The web uploader allows you to directly upload files from your computer to your
Edge Impulse project in a variety of file formats. You can also have the studio
automatically label your samples based on the filename.

370 | Chapter 11: Use Case: Wildlife Monitoring

https://oreil.ly/id-Bc
https://oreil.ly/id-Bc
https://oreil.ly/hZddx
https://oreil.ly/b3url

CLI uploader
The CLI uploader allows you to directly upload files locally from your computer’s
command-line terminal to your Edge Impulse project with a variety of file
formats and input options. You can also have the studio automatically label your
samples based on the filename.

Ingestion API
Write a data collection script connecting your platform over a networking pro‐
tocol to your Edge Impulse project by simply calling the ingestion API. Using
the scripting language of your choice, you can set timers and triggers to automat‐
ically upload images to your project using your Edge Impulse project API key.

Data sources (cloud bucket integration)
Directly pull data from your cloud data bucket and automatically trigger respon‐
ses in your Edge Impulse project (this feature is especially useful for improving
your model over time with active learning strategies).

Further details regarding the Edge Impulse data acquisition format can be viewed in
the Edge Impulse API reference documentation.

Connecting your device directly to Edge Impulse for data collection
There are many ways to upload data directly from your desired platform to your Edge
Impulse project.

If your chosen device platform is o&cially supported, you can follow the firmware
update guide found for your target within the Edge Impulse development boards
documentation.

If your chosen device platform is not o&cially supported, follow the development
platform porting guide to fully integrate the Edge Impulse ingestion API into your
embedded device firmware (note that porting is usually time consuming and not
necessary for most projects, unless you want your target to be featured on the Edge
Impulse community boards page), or use the Edge Impulse CLI serial data forwarder
to quickly and easily ingest data over the serial port or with WebUSB into your Edge
Impulse project.

You can also use a mobile phone or your computer to directly upload new images
from the camera on your device; check out all of the device connection options via
your project’s Devices tab (see Figure 11-2).

Dataset Gathering | 371

https://oreil.ly/cxdp4
https://oreil.ly/myL7K
https://oreil.ly/623ly
https://oreil.ly/1QweQ
https://oreil.ly/Z5IzD
https://oreil.ly/ULIdQ
https://oreil.ly/ULIdQ
https://oreil.ly/iOo23
https://oreil.ly/iOo23
https://oreil.ly/FsCTx
https://oreil.ly/xxTwr
https://oreil.ly/xxTwr
https://oreil.ly/c9qb0

Figure 11-2. “Collect data” view in the Devices tab

iNaturalist
Since most people likely do not have a large dataset of invasive species images
available at their disposal, a secondary form of data collection is required in order to
start our dataset of images of our invasive animal. For this tutorial, rather than setting
up a device in the field to collect new, unlabeled raw images of animals, we will
instead use images acquired from the community in our desired location that have
already been (somewhat) reliably labeled with the name of our target species. Using
iNaturalist, we will query their database for images with our identified species, query
on this species name, and download a dataset of images with the iNatural image ID
and photographer’s username attributed to each file download.

372 | Chapter 11: Use Case: Wildlife Monitoring

https://www.inaturalist.org

You will need an iNaturalist account to log into the iNaturalist export website and
process the following queries.

First we will query on our desired trap animal species name and retrieve a CSV file
with the following columns in iNaturalist: id, user_login, quality_grade, license, url,
image_url (see Example 11-1 and Figure 11-3).

Example 11-1. Query for Callosciurus "nlaysonii

q=Callosciurus+finlaysonii&search_on=names&has%5B%5D=photos
 &quality_grade=any&identifications=any

Figure 11-3. Select the columns for the CSV "le

We will also need a dataset of images that include “unknown” species or images of
the environment in the Netherlands that do not include the Callosciurus "nlaysonii
(or any animals at all). This “unknown” data will allow us to train our model to more
accurately predict when our trap animal has been photographed/captured by our
device. Query for this data with the following columns in iNaturalist: id, user_login,
quality_grade, license, url, image_url (see Example 11-2 and Figure 11-4).

Example 11-2. Query for unlabeled images in place ID 7506 (Netherlands)

search_on=place&has[]=photos&quality_grade=any&identifications=any
 &iconic_taxa[]=unknown&place_id=7506

Dataset Gathering | 373

https://oreil.ly/u4m7i

Figure 11-4. Select the columns for the CSV "le

Download the CSV files generated from iNaturalist from the preceding queries and
save the files to your computer.

Now, using the CSV files we generated, use the Python code in Example 11-3
to download and save the iNaturalist query images to your computer, while also
attributing the files we download with the username of the original iNaturalist
uploader. Run the script twice, once for your trap animal images, and again for
your “unknown” images. Save these files in two different directories, for exam‐
ple /unknown/ and /animal/ (see Example 11-3).

You may also need to install the requests package via pip if you don’t already have it:
python -m pip install requests.

Example 11-3. Python code to download images from iNaturalist

import csv
from pathlib import Path
import requests

directory = Path("unknown") # Replace directory name, "unknown" or "animal"
directory.mkdir(parents=True, exist_ok=True)

with open("observations-xxx.csv") as f: # Replace csv filename
 reader = csv.reader(f)
 next(reader, None) # skip header row

374 | Chapter 11: Use Case: Wildlife Monitoring

11 See the article by Neil A. Gilbert et al., “Abundance Estimation of Unmarked Animals Based on Camera-Trap
Data”.

 for data in reader:
 # filename is constructed as id.user_login.extension
 id_, user_login, url = data[0], data[1], data[5]
 extension = Path(url).suffix
 path = directory / f"{id_}.{user_login}{extension}"
 img = requests.get(url).content
 path.write_bytes(img)

If you’d like to drop query params in image URLs (as explained above), replace
Path(url).suffix with Path(url.split("?")[0]).suffix.

This script may take a while to run depending on how big your CSV file is and how
many entries resulted from your iNaturalist query. For this use case, I recommend
keeping your iNaturalist query to under 4,000 results. You can reduce the output
of your iNaturalist query by changing the query settings to include only research
quality–grade images, images from a specified place ID, etc. You can find a specific
place ID by going to the iNaturalist website and typing in a location in the Place
textbox of the Identify search bar, then the place ID value will populate in the URL
after pressing Go. For example, New York City has place ID 674: https://www.inatural
ist.org/observations/identify?place_id=674.

Dataset Limitations
Even with a robust dataset acquired from iNaturalist, there are still many limitations
that arise. When a camera records multiple detections of an unmarked animal, one
cannot determine whether the images represent multiple mobile individuals or a
single individual repeatedly entering the camera viewshed.11

iNaturalist also tends to prefer images of animals that are close-up/large within the
image frame. This bias of animal images could reduce the accuracy of the resulting
machine learning model in the real world as the close-up images tend to not include
a large background of the surrounding environment, resulting in a model that expects
every animal to be close to the camera lens.

In order to counteract this bias, an “active learning” approach may be necessary in
order to improve the model over time—i.e., initially deploy a subpar model to camera
trap new images of the target creature, store these new images directly on the device
or upload them to a cloud bucket, then confirm the animal is located in these images,
label and upload them to our project’s original training dataset, and finally retrain the
model and redeploy to the device.

Dataset Gathering | 375

https://doi.org/10.1111/cobi.13517
https://doi.org/10.1111/cobi.13517
https://oreil.ly/SGCIr
https://www.inaturalist.org/observations/identify?place_id=674
https://www.inaturalist.org/observations/identify?place_id=674

Dataset Licensing and Legal Obligations
Upon Edge Impulse account creation, every Edge Impulse user must abide by the
following terms of use, licenses, and policies:

• Edge Impulse Privacy Policy•
• Edge Impulse Terms of Service•
• Edge Impulse Responsible AI License•
• Edge Impulse DMCA (Digital Millennium Copyright Act) Policy•

Assuming you are abiding by the above rules and conditions, once you create and
deploy your model to your device, you have no subscription or fees; as of writing
this book (2022) all free Edge Impulse users are allowed to distribute and deploy
their model to an endless amount of devices in production, for free. If your data was
originally your own, you maintain your IP throughout the entire life cycle of your
edge AI model.

If you are using a dataset downloaded from a third-party site such as iNaturalist, you
will need to ensure that the data you have acquired is eligible to be redistributed or
used for commercial use. More details about iNaturalist’s Terms of Use can be viewed
on their website.

For any other datasets, please ensure you are acquiring, distributing, and using the
data legally, fairly, and ethically. Many dataset collection sites will use licenses such as
Creative Commons, Apache, etc. You will need to use your best judgment when using
these datasets for the purposes of edge machine learning model training and testing.
If you have any doubts, email the dataset owner or data collection site support team
for more information on data usage requirements or attribution obligations and legal
clarification.

Cleaning Your Dataset
Because we have downloaded our image dataset from iNaturalist and thus have
already labeled our images with their associated machine learning class, we do not
need to do much further dataset cleaning before we upload our images into our Edge
Impulse project.

However, if you have a small dataset of labeled images and also a larger dataset
of associated but unlabeled images, Edge Impulse provides a tool called the “data
explorer” to allow you to use a pretrained model (see Figure 11-5), a previously
trained impulse, or your preprocessing block to bulk label unlabeled images in your
training or testing datasets. Of course, this tool will not work if you have not already
trained a model on a smaller subset of your data, as unique species names are not
pretrained on existing ImageNets like MobileNetV2, for example. You can also select

376 | Chapter 11: Use Case: Wildlife Monitoring

https://oreil.ly/Ud6ja
https://oreil.ly/0y-PK
https://oreil.ly/rmeaN
https://oreil.ly/a6SwO
https://oreil.ly/Thjyc
https://oreil.ly/Thjyc
https://oreil.ly/AyCfy
https://oreil.ly/uhD9P
https://oreil.ly/uhD9P

between two different types of dimensionality reductions, t-SNE (works well with
smaller datasets) and PCA (works with any dataset size).

Figure 11-5. Edge Impulse Studio data explorer

Uploading Data to Edge Impulse
Following the iNaturalist Python data downloading script, upload your images to
your Edge Impulse project (see Figure 11-6) using the Edge Impulse project web
GUI, or with the following Edge Impulse CLI uploader command, and make sure
to replace [your-api-key] with the API key of your Edge Impulse project, [label]
with “unknown” or the name of your trap animal, and [directory] with the file
directory you specified in the iNaturalist Python script:

$ edge-impulse-uploader --api-key [your-api-key] --label [label] \
 --category split .[directory]/*

Dataset Gathering | 377

https://oreil.ly/l_OQo

Figure 11-6. Uploading existing dataset into the Edge Impulse web uploader

Both the web GUI and the uploader CLI allow you to automatically split the uploaded
images into both the training and testing datasets at an 80/20 split (a good ratio for
most machine learning projects).

378 | Chapter 11: Use Case: Wildlife Monitoring

DSP and Machine Learning Work#ow
Now that we have uploaded all of our images into our training and testing datasets,
we need to extract the most important features of our raw data using a digital
signal processing (DSP) approach, and then train our machine learning model to
identify patterns in our image’s extracted features. Edge Impulse calls the DSP and
ML training workflow the “Impulse design.”

The “Impulse design” tab of your Edge Impulse project allows you to view and create
a graphical, simple overview of your full end-to-end machine learning pipeline. On
the far left is the raw data block where the Edge Impulse Studio will ingest and
preprocess your data; in our case for images it will normalize all our images so they
have the same dimensions, and if the dimensions are not square, it will crop the
image via your method of choice.

Next is the DSP block, where we will extract the most important features of our
images via an open source digital signal processing script. Once we have generated
our data’s features, the learning block will train our neural network based on our
desired architecture and configuration settings.

Finally, we can see the deployment output information, including the desired classes
we would like our trained machine learning model to classify.

In your Edge Impulse project, set up your “Impulse design” tab the same as in
Figure 11-7, or as listed by selecting from the various block pop-up windows, then
click Save Impulse:

Image data
• Image width: 160•
• Image height: 160•
• Resize mode: Fit shortest axis•

Processing block
• Image•

Learning block
• Transfer Learning (Images)•

DSP and Machine Learning Work#ow | 379

Figure 11-7. Impulse design tab con"guration

Digital Signal Processing Block
For the project presented in this chapter, we will be using the Image DSP algorithm
that is included by default in the Edge Impulse Studio. This image processing block
we selected on the “Impulse design” tab is prewritten and available for free use and
free deployment from the platform. The code used in the Image block is available
in the Edge Impulse GitHub repository “processing-blocks”. You can also learn more
about the specifics of the Spectral Analysis algorithm in “Image feature detection” on
page 92.

If you would like to write your own custom DSP block for use in the Edge Impulse
Studio, it’s easy to do so in your language of choice by following the Edge Impulse
custom processing blocks tutorial.

However, if you do decide to write your own custom DSP processing block for
your application, note that you will need to then write the corresponding C++
implementation of your custom DSP Python/MATLAB/etc. code in order for your
model deployment to work as intended within the Edge Impulse SDK. This is a major
advantage of using a readily available DSP block in the Edge Impulse Studio as it
reduces the total development time from data collection to feature extraction and
then deployment—you do not need to write any of your own custom C++ code on
the application side; everything is already integrated within the deployed library and
ready for compilation.

From the Image tab in the navigation sidebar, leave the color depth as RGB and click
on “Save parameters.” Now, select “Generate features” to create a view of the “Feature
explorer” (see Figure 11-8).

380 | Chapter 11: Use Case: Wildlife Monitoring

https://oreil.ly/jjL2E
https://oreil.ly/Dx2KJ
https://oreil.ly/Dx2KJ

Figure 11-8. Image DSP block and feature explorer

Machine Learning Block
We are now ready to train our edge machine learning model! There are multiple
ways to train your model in Edge Impulse, the easiest of which is the visual (or web
GUI) editing mode. However, if you are a machine learning engineer, expert, or if you
already have experiencing coding with TensorFlow/Keras, then you can also edit your
transfer learning block locally or in expert mode within the Edge Impulse Studio.

We can set the neural network architecture and other training configuration settings
of our project from the “Transfer learning” tab.

Visual mode
The easiest way to configure and set our machine learning training settings and
neural network architecture is through the Edge Impulse Visual mode, or the default
view when you select the “Transfer learning” tab under “Impulse design” in the
navigation bar. The following settings are automatically applied by default when you
save an impulse with the transfer learning block (see Figure 11-9); if these settings
differ in your project, go ahead and copy these settings into your transfer learning
block configuration:

• Number of training cycles: 100•
• Learning rate: 0.0005•
• Validation set size: 20%•
• Auto-balance dataset: unchecked•

DSP and Machine Learning Work#ow | 381

• Data augmentation: unchecked•
• Neural network architecture: MobileNetV2 96x96 0.35 (final layer: 16 neurons,•

0.1 dropout)

Figure 11-9. Default transfer learning Neural Network settings

382 | Chapter 11: Use Case: Wildlife Monitoring

Once you have entered the settings, all you need to do is click “Start training” below
the neural network architecture configuration to spawn your training job on the Edge
Impulse servers. The job that is spawned is training your model exactly how you
would normally train your model if you were running a TensorFlow/Keras script
locally on your own computer. By using Edge Impulse, we do not need to use up
local resources on our own computer, and instead are leveraging the cloud compute
time that Edge Impulse offers for free to all developers. Depending on the size of
your dataset, this training step may take a while, in which case you can select the bell
icon on the “Training output” view to get an email notification when your job has
completed and you can see the output of the training results (see Figures 11-10 and
11-11).

Figure 11-10. Training job noti"cation bell icon

Figure 11-11. Con"gure job noti"cation settings

Once your model training has completed, you can view the transfer learning results
in the “Model > Last training performance” view (see Figure 11-12).

DSP and Machine Learning Work#ow | 383

Figure 11-12. Transfer learning results from default block con"guration
(76.3% accuracy)

384 | Chapter 11: Use Case: Wildlife Monitoring

Considering that all we have done so far is upload our training and testing datasets,
extracted the most important features with the image DSP block, and trained our
model all with the default block configuration settings and without writing any code,
these results are pretty decent! The result of 76.3% is a fairly good initial accuracy
considering we haven’t done any custom configuration to our neural network archi‐
tecture, DSP block, etc., for our specific use case. However, we can further increase
the accuracy of our model by using the other tools available in Edge Impulse, such as
the EON Tuner, which we will describe in the next section.

Expert Mode

Are you a machine learning engineer, or do you already know how
to write TensorFlow/Keras code in Python? Use the Expert mode
option in Edge Impulse to upload your own code or edit the exist‐
ing block code locally by clicking the three-dot drop-down button
to the right of “Neural Network settings” and selecting “Switch to
Expert (Keras) mode” or “Edit block locally” from the menu.

EON Tuner
Auto machine learning tools are valuable tools that can automatically select and
apply the best machine learning algorithms for your data and automatically tune
the parameters of your machine learning model, which can further improve its
performance on the edge device. The Edge Impulse Studio provides an auto machine
learning tool in your project, called the EON Tuner. The EON Tuner will evaluate
many candidate model architectures and DSP blocks (selected based on your target
device and latency requirements) concurrently to help you find the best performing
architecture for your machine learning application.

From the EON Tuner tab of your Edge Impulse project, configure the settings shown
in Figure 11-13.

Select the following options from the EON Tuner’s configuration drop-down settings:

• Dataset category: Vision•
• Target device: Cortex-M7 (or any other supported platform; if you are not using•

an officially supported platform, choose a platform with hardware internals most
similar to that of your device)

• Time per inference (ms): 100•

DSP and Machine Learning Work#ow | 385

https://oreil.ly/wpEzB
https://oreil.ly/wpEzB
https://oreil.ly/sYSIP

Figure 11-13. EON Tuner con"guration settings

Then click “Start EON tuner,” as shown in Figure 11-14.

Figure 11-14. Start the EON Tuner

When comparing the results of the EON Tuner with the default image classification
blocks included in a default Edge Impulse project, we can see a vast difference
between them. With auto machine learning tools we can more quickly and efficiently
determine better performing neural network architectures, DSP blocks, parameters,
and more for our use case.

Figure 11-15 shows the default block results with the Image RGB DSP block and
the original “Transfer learning” neural network block with MobileNetV2 96x96 0.35
(final layer: 16 neurons, 0.1 dropout), 100 training cycles, and 0.0005 learning rate.

386 | Chapter 11: Use Case: Wildlife Monitoring

Figure 11-15. Transfer learning results with EON Tuner block con"guration
(89.5% accuracy)

DSP and Machine Learning Work#ow | 387

Once the EON Tuner auto machine learning job has completed, we can see the
results. For the EON Tuner results shown in Figure 11-16, the first result achieves an
accuracy of 90%; however, we will not select this model as the RAM and ROM both
exceed our target’s hardware specifications. So, the result we will select is the second
best option, at 89% accuracy.

Figure 11-16. EON Tuner results matrix (the best result that does not exceed target
RAM has 89% accuracy)

388 | Chapter 11: Use Case: Wildlife Monitoring

Based on these results, we definitely will want to update the primary block informa‐
tion with the blocks generated automatically for our use case with the EON Tuner.
Next to the configuration with the best accuracy, click the Select button and update
the primary model, as shown in Figure 11-17.

Figure 11-17. Updating the primary model with EON Tuner

Wait for the Studio to update the “Impulse design” blocks in your project (see
Figure 11-18), then click on “Transfer learning” and see your updated trained model
results, accuracy, and latency calculations, as shown in Figure 11-19.

DSP and Machine Learning Work#ow | 389

Figure 11-18. EON Tuner Neural Network settings

390 | Chapter 11: Use Case: Wildlife Monitoring

Figure 11-19. Primary transfer learning model updated with EON Tuner

DSP and Machine Learning Work#ow | 391

Testing the Model
Edge Impulse provides multiple types of testing and verification tools to increase
your confidence in the real-world accuracy of your trained machine learning model,
or impulse. After you have finished training your impulse, on the navigation bar of
your project, you can access the “Live classification” and “Model testing” tabs.

Testing Your Audio Models with Performance Calibration

If you developed an audio trap, as described in “Deep Dive: Bird
Sound Classification Demo with Lacuna Space” on page 402, then
you can also use Performance Calibration model testing and real-
world performance tuner in your Edge Impulse project.

Live Classi"cation
From the “Live classification” tab, you can test individual test samples from your
testing dataset against your trained model or connect your device and record new
images and test samples in real time, then view the image’s extracted features and
resulting classification result and inferencing predictions (see Figure 11-20).

Figure 11-20. Live classi"cation

Connect an officially supported device to the “Live classification” tab via the installed
Edge Impulse device firmware, or via the Edge Impulse CLI data forwarder; for
example, connect an Arduino Nano 33 BLE Sense to your project to take new testing
images in the device’s environment via the following CLI command: edge-impulse-
daemon. Follow the CLI prompts to connect your device to your project and record
new samples.

Or load an existing testing dataset image in “Classify existing test sample” to view this
sample’s extracted features and your trained model’s prediction results (as shown in
Figure 11-21).

392 | Chapter 11: Use Case: Wildlife Monitoring

https://oreil.ly/lBG87
https://oreil.ly/gO2EL
https://oreil.ly/B3eQh

Figure 11-21. Live classi"cation result

Model Testing
You can also bulk classify your testing dataset against your trained model by navi‐
gating to the “Model testing” tab of your project (see Figure 11-23). From here,
you can select the “Classify all” button to automatically collect your testing data’s
inferencing results and model predictions in one long table. You can also set the
confidence threshold (shown in Figure 11-22) for your model’s inferencing results
here by clicking on the three-dot drop-down button “Set confidence thresholds.” The
threshold score determines how to trust the trained neural network. If the confidence
rating is below the value you set, the sample will be tagged as “uncertain.” You
can use inferencing results with “uncertain” to increase the accuracy of your model
even further with an “active learning” model development strategy; upload these
uncertain images, label them, retrain your model, and redeploy to your edge device!
See Figure 11-23 for the model testing results.

Testing the Model | 393

https://oreil.ly/gPhj3

Figure 11-22. Set con"dence thresholds

Figure 11-23. Model testing tab results

394 | Chapter 11: Use Case: Wildlife Monitoring

Test Your Model Locally
You can also download all of the intermediate block results and trained model
information to test your model locally through any method you desire—i.e., with
a Python script to test your model as you normally would for a TensorFlow/Keras
workflow. Navigate to the Dashboard of your Edge Impulse project to view all of the
block output files available, as shown in Figure 11-24.

Figure 11-24. Download block output

Deployment
Congratulations! You have just finished collecting and labeling your training and
testing datasets, extracting your data’s features with the DSP block, designing and
training your machine learning model, and testing your model with your testing
dataset. Now that we have all of the code and model information needed for inferenc‐
ing on our edge device, we need to flash the prebuilt binary to the device or integrate
the C++ library into our embedded application code.

Select the Deployment tab of your Edge Impulse project and follow the steps for one
of the many deployment options in the next sections to run your trained machine
learning model on your edge device.

Deployment | 395

Create Library
For a simple development experience, Edge Impulse provides many prewritten code
examples for integrating your deployed model into your embedded application firm‐
ware. Using an officially supported development board will allow for the quickest
deployment and least amount of development time, as you will be able to drag-and-
drop the resulting prebuilt firmware application onto your development board, or
clone the board’s open source firmware repository from the Edge Impulse GitHub
organization, which contains all device firmware and drivers needed in order to get
started quickly with your embedded application development and debugging process.

If you are deploying your model to an “unofficially supported” platform, there are
many resources available to help you with integrating the Edge Impulse SDK into
your application code, regardless of library deployment option:

• Prebuilt Edge Impulse firmwares•
• Integrating the Edge Impulse SDK into your application•
• Understanding the C++ library code and getting model inference results•

A majority of projects utilizing an “unofficially supported” device will deploy using
the C++ library option available under the “Create library” view of your project’s
Deployment tab (see Figure 11-25). The C++ library is portable, with no external
dependencies, and can be compiled with any modern C++ compiler.

Custom Processing Blocks

If you decided to use your own custom DSP block in your Edge
Impulse Studio project, you will need to write the DSP block’s
equivalent C++ implementation and integrate this into the Edge
Impulse SDK code. More information can be found in the Edge
Impulse documentation.

396 | Chapter 11: Use Case: Wildlife Monitoring

https://oreil.ly/rH9iO
https://oreil.ly/rH9iO
https://oreil.ly/V3eRI
https://oreil.ly/yAlgD
https://oreil.ly/-gPy_
https://oreil.ly/t1K1_
https://oreil.ly/t1K1_

Figure 11-25. Create an open source library

Mobile Phone and Computer
Quickly deploy your model to the edge with your computer or mobile phone by
clicking the Edge Impulse “Computer” and “Mobile phone” deployment options.
These deployment options utilize an open source mobile client firmware that builds
a WebAssembly library for your trained impulse to classify brand-new data directly
from the camera on your phone or computer. This option is great for quick model
prototyping and testing, since you do not need to write any code for this deployment
option if you are using a default/integrated sensor type in your training/testing
datasets.

Deployment | 397

https://oreil.ly/4-S9S

For this project, because our training and testing data is just images, we can use the
camera on our phone to test our model directly on the edge through the cache of our
phone’s web browser and integrated camera data (see Figure 11-26).

Figure 11-26. Run your impulse directly (mobile phone and computer)

Select the “Computer” or “Mobile phone” icon from the Deployment tab of your
project, and click Build. If you are using your mobile phone, scan the generated QR
code with your phone’s camera and open the URL in your phone’s web browser.
Give the mobile client access to your phone’s camera and wait for your project to
build. Now you are viewing your trained camera trap model running on the edge
and printing your inferencing results directly on your mobile phone! See the result in
Figure 11-27.

398 | Chapter 11: Use Case: Wildlife Monitoring

Figure 11-27. Camera trap model running on mobile phone deployment

Deployment | 399

12 See Jan Jongboom’s blog post, “Introducing EON: Neural Networks in Up to 55% Less RAM and 35% Less
ROM” (Edge Impulse, 2020).

Prebuilt Binary Flashing
From the Deployment tab, select your officially supported Edge Impulse development
platform under “Build firmware” and then select Build. You also have the option to
utilize the EON Compiler, which lets you run neural networks using 25–55% less
RAM, and up to 35% less flash, while retaining the same accuracy, compared to
TensorFlow Lite for Microcontrollers.12

Then, drag-and-drop or flash the resulting firmware application onto your officially
supported platform by following the instructions shown after clicking Build from the
Deployment tab. More in-depth instructions for flashing your prebuilt binary can be
found in the Edge Impulse documentation for your chosen development platform.

For this project, we will select the “OpenMV Library” deployment option to run our
trained model on the OpenMV Cam H7 Plus, shown earlier in Figure 11-25.

Follow the instructions in the OpenMV deployment documentation on the Edge
Impulse website to download and install software prerequisites. Then extract the
downloaded ZIP file of your model firmware and drag-and-drop or copy the
labels.txt and trained.t%ite files into the filesystem of your plugged-in OpenMV Cam
H7 Plus. Open the ei_image_classi"cation.py script in the OpenMV IDE. Connect to
your OpenMV Cam board via the USB icon and run the Python script to see your
model’s inferencing results running on the edge in the serial terminal view, as shown
in Figure 11-28.

400 | Chapter 11: Use Case: Wildlife Monitoring

https://oreil.ly/3-kTN
https://oreil.ly/3-kTN
https://oreil.ly/llg9B
https://oreil.ly/EfJwe
https://oreil.ly/82tKN
https://oreil.ly/82tKN

Figure 11-28. OpenMV IDE model deployment to OpenMV Cam H7 Plus

Impulse Runner
You can also use the Edge Impulse CLI to download, deploy, and run your models
continuously through a USB serial connection to an officially supported platform of
your choosing. Or use the Edge Impulse Linux runner to download, deploy, and run
the Edge Impulse model on a Raspberry Pi 4 or other Linux device.

GitHub Source Code
The application source code used in this chapter, including the deployed library from
the public Edge Impulse project and completed application code, is available to view
and download from the GitHub repository.

Iterate and Feedback Loops
Now that you have deployed the first iteration of your wildlife monitoring model to
the edge, you may be satisfied with the results and discontinue development here.
However, if you wish to further iterate over your model and further improve the
accuracy over time or with newly acquired equipment upgrades, for example, there
are many adaptations and variations to consider and improve upon for this project:

Iterate and Feedback Loops | 401

https://oreil.ly/KVUJf
https://oreil.ly/SJZex
https://oreil.ly/I_EIA
https://oreil.ly/rmE7-

13 See Aurelien Lequertier et al. blog post: “Bird Classification in Remote Areas with Lacuna Space and The
Things Network”, Edge Impulse, 2021.

• Add more machine learning classes to your model for different animal(s).•
• Create a camera trap for invasive plant species instead of animals: for local•

gardening/foraging purposes, etc.
• Use different sensors to achieve the same goal—i.e., a wildlife conservation trap•

using a gas sensor or switching your camera training data input from labeled
images to bounding boxes for species object detection (see “Object detection and
segmentation” on page 97).

• Use the same model to achieve a di$erent goal or place it in a different environ‐•
ment, refining the “unknown” class.

• Utilize a combination of sensors to further improve the accuracy of your•
model—i.e., camera + audio input, audio + gas input, etc.

You can also create multiple projects in Edge Impulse, to create many different
machine learning models for multiple device locations, multiple datasets, and classi‐
fying other trap animals. For example, you can use the same Sahara desert model
for multiple animal species, and just swap out the main species for another of your
choosing in the initial dataset and then retrain and redeploy. This allows you to
utilize the same model configuration as you used for one environment on another.

Deep Dive: Bird Sound Classi"cation Demo with Lacuna Space
Following is an interesting demo of using bird sounds to classify and track specific
species of birds throughout the world using space satellites and LoRaWAN, created by
Edge Impulse and Lacuna Space (see Figure 11-29).13

Using a web tracker, you can determine the next good time a Lacuna Space satellite
will be flying in your device’s location, then you can receive the signal through The
Things Network application and view the model’s inferencing results for bird call
classification in your device’s environment:

{
 "housesparrow": "0.91406",
 "redringedparakeet": "0.05078",
 "noise": "0.03125",
 "satellite": true,
}

402 | Chapter 11: Use Case: Wildlife Monitoring

https://oreil.ly/4Rneh
https://oreil.ly/4Rneh
https://lacuna.space
https://www.thethingsnetwork.org
https://www.thethingsnetwork.org

Figure 11-29. Lacuna Space demo

You can check out the training/testing data, digital signal processing code, and
machine learning code used for this project by navigating to the Edge Impulse “Bird
sound classifier” project page.

A downside to this solution is that, although you are able to identify and monitor
the classified birdcalls in your device’s environment, you are only able to receive the
general classification data using this approach and not any accurate location or track‐
ing/counting data of specific singular birds. Therefore, this method is likely more
effective in tracking whole species, migration patterns, and seasonal identification
data rather than as a method for preventing overhunting, analyzing the impact of the
species’ invasive threats, etc.

AI for Good
Throughout this book, we have discussed the importance of using the machine learn‐
ing tools and knowledge described here in an ethical fashion. Many companies have
already put the idea of “technology for good” to use—from Edge Impulse to Google,
many environmental/wildlife conservation efforts and pledges have been established:

• 1% for the Planet•
• Edge Impulse’s commitment to 1% for the Planet•
• Google, “Tale of a Whale Song”•
• Microsoft, AI for Good•

AI for Good | 403

https://oreil.ly/Vf4Q0
https://oreil.ly/Vf4Q0
https://oreil.ly/_xwYK
https://oreil.ly/CRH0m
https://oreil.ly/wtIpX
https://oreil.ly/o0TGV

Related Works
As stated throughout this chapter, camera traps and conservation traps are an estab‐
lished, known, and widely adopted device in research efforts and in ethical hunting
practices. The next sections describe various devices, datasets, research articles,
and books on the topic of ethical camera trapping for the problem of decreasing
populations of various endangered species and the resulting protection of existing
populations.

This book also notes the sources for various applications, methods, devices, and
quotes from various research and commercial adoption of camera traps throughout
the chapter in the footnotes on each page.

Datasets
There are many existing datasets and dataset collection platforms available for this
type of use case on the internet. A simple Google search can yield many results;
however, a few more data collection platforms and research datasets for our use case
have been listed below:

• Kaggle Invasive Species Monitoring Competition•
• Invasive Alien Plant dataset•
• iWildcam 2021•
• Labeled Information Library of Alexandria: Biology and Conservation; list of•

other conservation datasets
• Caltech-UCSD Birds-200-2011, classification of birds by camera•
• Caltech Camera Traps•

Again, be mindful that you are using each dataset for ethical purposes and ensure
that your model’s target species is not considered endangered or threatened in your
device’s installed location/region.

Research
• Ahumada, Jorge A. et al. Wildlife Insights: A Platform to Maximize the Potential•

of Camera Trap and Other Passive Sensor Wildlife Data for the Planet. Cambridge
University Press, 2019.

• Apps, Peter, and John Weldon McNutt. “Are Camera Traps Fit for Purpose? A•
Rigorous, Reproducible and Realistic Test of Camera Trap Performance”. Wiley
Online Library, 2018.

404 | Chapter 11: Use Case: Wildlife Monitoring

https://oreil.ly/H4Y3N
https://oreil.ly/xfBKr
https://oreil.ly/76OW4
https://oreil.ly/-IUvi
https://oreil.ly/-IUvi
https://oreil.ly/lLU00
https://oreil.ly/boZ8q
https://doi.org/10.1017/S0376892919000298
https://doi.org/10.1017/S0376892919000298
https://doi.org/10.1111/aje.12573
https://doi.org/10.1111/aje.12573

• Fischer, Johannes H. et al. “The Potential Value of Camera-Trap Studies for•
Identifying, Ageing, Sexing and Studying the Phenology of Bornean Lophura
Pheasants”. ResearchGate, 2017.

• Jang, Woohyuk, and Eui Chul Lee. “Multi-Class Parrot Image Classification•
Including Subspecies with Similar Appearance”. MDPI, November 5, 2021.

• O’Brien, Timothy G., and Margaret F. Kinnaird. A Picture Is Worth a #ousand•
Words: #e Application of Camera Trapping to the Study of Birds. Cambridge
University Press, 2008.

• O’Connell, Allan F. et al., eds. Camera Traps in Animal Ecology: Methods and•
Analyses. Springer Tokyo, 2011.

• Rovero, Francesco et al. “Which Camera Trap Type and How Many Do I Need?”•
Hystrix 24 (2013).

• Shepley, Andrew et al. “Automated Location Invariant Animal Detection in Cam‐•
era Trap Images Using Publicly Available Data Sources”. ResearchGate, 2021.

Related Works | 405

https://oreil.ly/udikH
https://oreil.ly/udikH
https://oreil.ly/udikH
https://doi.org/10.3390/biology10111140
https://doi.org/10.3390/biology10111140
https://doi.org/10.1017/S0959270908000348
https://doi.org/10.1017/S0959270908000348
https://doi.org/10.1007/978-4-431-99495-4
https://doi.org/10.1007/978-4-431-99495-4
https://doi.org/10.4404/hystrix-24.2-8789
https://oreil.ly/FUEJN
https://oreil.ly/FUEJN

CHAPTER 12

Use Case: Food Quality Assurance

Industrial edge AI is used in food quality assurance to automatically detect and
correct food defects and prevent food spoilage. This is done by training a machine
learning model to recognize patterns in food images or from various industrial
sensors that indicate a defect. The model is then deployed on an edge device, such as
a camera, to automatically detect and correct defects in real time. This helps to ensure
that food is of the highest quality and minimizes waste.

By using edge AI, food waste can be prevented by monitoring and managing food
production and distribution more effectively. For example, if there is a problem with
food spoilage, edge AI can be used to track the problem and take corrective action. In
this chapter, we will brainstorm various approaches to using edge AI for food quality
assurance purposes, their associated sensor and device configurations, and a deep
dive tutorial into our selected approach and use case solution.

Problem Exploration
The term “food quality assurance” is too broad of a concept to tackle in this one
chapter and too large of a problem to be solved with just one machine learning
model; so for the purposes of this book, we will focus on food quality assurance in
terms of preventing and minimizing food waste in a home kitchen environment, on
a food product manufacturing line, or in cold storage/pantry shelving at a grocery
store.

Preventing food waste can come in many different forms. Goal-wise we can both
generate a machine learning model that can identify when a food item is about
to spoil or has already spoiled, or we can create a model that identifies factors in
the food manufacturing environment or product mishandling that will tend to the
creation of foodborne illnesses. Both of these approaches accomplish the same goal,

407

1 See the IBM article, “What Is Industry 4.0?: How Industry 4.0 Technologies Are Changing Manufacturing”.
2 See the Wikipedia entry “Fourth Industrial Revolution”.

preventing and minimizing food waste, but could require a different combination of
machine learning classes and sensor inputs in order to solve.

Deploying edge AI devices in smart factories can also lead to higher productivity and
improved quality. Introducing AI into the manufacturing process can help to reduce
errors and save time and money. By using a smartphone connected to the cloud,
quality-control personnel can monitor the manufacturing process from anywhere. By
applying machine learning algorithms, manufacturers can detect errors immediately.1

Solution Exploration
Industry 4.0, or the colloquial term for the “Fourth Industrial Revolution,” conceptu‐
alizes a rapid change to technology, industries, and societal patterns and processes in
the 21st century due to increasing interconnectivity and smart automation.2

Major Trends of Industry 4.0

• Smart factory•
• Predictive maintenance•
• 3D printing•
• Smart sensors (agriculture and food industries)•

Edge AI is being used more and more for food quality assurance as AI can help
to inspect food for contaminants, test food for quality, and even predict food safety
issues before they happen. Food quality assurance is a process that helps to ensure
that the food we consume is safe and of high quality. This process includes a variety
of steps, such as inspecting food for contaminants, testing food for quality, and
maintaining clean and safe food-handling practices. By following these steps, we can
help to ensure that the food we eat is safe and of good quality.

We can begin to intuitively think about how to apply edge AI and machine learning
to the problem of food quality assurance by thinking about and researching the exist‐
ing issues and factors that contribute to food spoilage, allergens, cross-contamination
manufacturing processes, and more. By diving into these existing areas of research
and industries, many problems will arise that have associated sensors and machinery.
By simply tapping into existing sensors or adding a small, minimally invasive micro‐
controller onto an existing machinery structure we can identify new patterns in
established datasets and sensor configurations, or even create a brand new sensor (a

408 | Chapter 12: Use Case: Food Quality Assurance

https://oreil.ly/ZMhe7
https://oreil.ly/39viN

“virtual sensor”) through a concept called “sensor fusion” (see “Combining Features
and Sensors” on page 93).

Goal Setting
Food safety is important because it helps to ensure that the food we consume is free
of harmful contaminants. These contaminants can come from a variety of sources,
including bacteria, viruses, and chemicals. By following food safety guidelines, we
can help to reduce our risk of becoming sick from eating contaminated food through
foodborne illnesses.

Factors of Food Spoilage

There are many factors that can contribute to food spoilage,
including bacteria, viruses, fungi, chemicals, and other various
environmental factors, including:

• External heat/cold•
• Internal temperature•
• Oxygen•
• Salt•
• Humidity•
• Waste exposure•
• Moisture•
• Light•
• Protozoa•

AI tools for food quality assurance are important in order to ensure the health of
workers on food production lines and the consumer that purchases the food product,
and to reduce overall food waste and minimize climate change and negative effects
on the environment. Food quality assurance edge AI also represents an opportunity
to explore other meaningful social impact areas, such as assisting those with food
allergies to determine which foods are safe to eat or not depending on their own
personalized allergy matrix.

Solution Design
In this book, we are choosing to design and implement a low-cost, efficient, and
easy-to-train food quality assurance edge AI model to reduce food waste with a
microcontroller with a gas sensor attachment. However, an edge AI model for detect‐
ing food spoilage does not only need to be created with a gas sensor. By using the

Solution Design | 409

3 Pini Mandel, “Putting the AI in Grocery Aisles”, Food Logistics, 2021.
4 Food Loss and Waste Database.

principles and design workflow presented in this chapter and throughout the book,
many other types of machine learning models and applications can be implemented
for food quality assurance purposes, including using camera image input to monitor
food safety regulations and equipment, identifying various foodborne diseases or
allergens with various environmental sensors, and more.

What Solutions Already Exist?
Food quality assurance has been and will continue to be a top priority for many
companies; for a grocery store that relies on a volatile food product to be sold before
it hits its sell-by date or before it spoils or gets stale, any technology or solution
that can help improve profits and reduce food waste is a high value investment.
Uber has taken AI advances in stride as well to circumvent food delivery losses
with Michelangelo, Uber’s machine learning platform. This model predicts the meal
estimated time of delivery and assists both the delivery drivers and the restaurant
with real-time feedback and estimation calculations on each part of the process to get
the Uber Eats user’s order from the restaurant’s kitchen to their home.

Local governments also have a large stake in preventing and reducing the amount of
food that is wasted every day. The Food and Agriculture Organization of the United
Nations estimates that 1.3 billion tons of food is wasted every year, nearly one-third
of all food produced.3 This is enough food to feed 815 million people, four times
over.4

Food quality assurance concepts and AI solutions are also being applied to products
that help people who suffer from various food-related allergies. The world’s smallest
and fastest consumer food allergen sensor, Allergy Amulet, allows the end user to
collect a sample of their food, and within seconds, receive a report if a food allergen is
present.

Solution Design Approaches
We can take our problem statement and design a solution via many different
approaches, a few of which we describe here:

Detecting food spoilage, for consumer or industrial use
A gas sensor is a device that can detect the presence of various gases in the air.
It is often used in industrial settings to monitor for hazardous gases. However, it
can also be used to detect when meat or fish, or other particularly smelly/gaseous
food products are about to spoil. Combined with edge AI, a food spoilage device

410 | Chapter 12: Use Case: Food Quality Assurance

https://oreil.ly/WrkjE
https://oreil.ly/xe0z6
https://oreil.ly/dtgfZ
https://oreil.ly/RFgSO
https://oreil.ly/RFgSO
https://oreil.ly/ECfGo

5 Ilker Koksal, “Using AI to Increase Food Quality”, Forbes, 2021.

is a great tool for both industrial and home contexts in order to minimize food
waste and prevent foodborne illness.

Installing a gas sensor inside of a fridge or on a food production line allows the
user of the AI device to gain insight as quickly as possible about their food’s
spoilage status. The sensor could work by detecting the levels of carbon dioxide,
ammonia, or other gases in the air that are produced when meat or fish starts
to spoil. By detecting these gases early on, the sensor can alert the user or
factory worker to dispose of the food before it has a chance to contaminate other
products.

Monitoring food safety compliance
In the food industry, safety and compliance is a top priority and is commonly
regulated by local governments. One way to protect the end consumer is to
ensure that all humans on food packaging lines are wearing adequate food
safety apparel, such as white coats, hairnets, goggles, and gloves. A computer
vision model can be used to track this information and identify any anomalies.
Additionally, audio data can be used to listen for any unusual sounds that may
indicate a problem with the food preparation process.

In addition to monitoring adequate production line apparel, a model can also be
developed to track handwashing to ensure that all workers are following proper
safety and health protocol. This can be done with audio or other sensor data.
By tracking these data points, we can help to ensure a safe and efficient food
manufacturing process.

Monitoring quality control of food production
Food adulteration and consumer deception is an unfortunate reality in the
modern world. Adulteration with cheaper or lower-quality oils, for example,
has a huge impact on the quality of oil in the product; with olive oils, the most
frequent adulterations are sunflower oil, maize oil, coconut oil, and hazelnut oil.
In order to combat this, the use of e-noses in this part of processing is a game
changer in terms of quality checks.5

We can also monitor the temperature of food throughout the production pipe‐
line, from production time to packaging to eventual store shelving, or from deliv‐
ery car to customer, etc. It is also important to monitor freezer and refrigerator
temperature over time and how it affects product quality (number of ice crystals,
freezer burn, etc.), as well as the spoilable status of foods, whether they are
past sell-by date or if the food is identified to be rotten. By implementing these
various quality-control measures, we can help ensure that the food we consume
is of the highest possible quality.

Solution Design | 411

https://oreil.ly/kvHri

6 Nicholas J. Watson et al., “Intelligent Sensors for Sustainable Food and Drink Manufacturing”, Frontiers in
Sustainable Food Systems.

Detecting cross-contamination and food allergens
Allergens like nuts and gluten can cause serious reactions in some people, and
even death. Factory machines can sometimes break, and pieces of metal can end
up in the food. Human handling of food can also introduce contaminants like
bacteria. There are a few ways to detect if allergens have come into contact with
food items. The first is to check for any signs of contamination. This can be done
by looking for any changes in color, texture, or smell. If the food item looks or
smells different than it did when it was first packaged, it may be contaminated.6

So how can we detect these potential problems? There are several ways. First,
we can look for signs of allergens in the food. If we see nuts or gluten listed as
ingredients, for example, we know that they may be present in the food. We can
also look for signs of metal contamination, like small pieces of metal in the food.
Finally, we can look for signs of human contamination, like the lack of gloves or
other protective gear.

Any one of the previously described use case solution approaches can help to ensure
that the food we eat is safe and free of contaminants, promoting this chapter’s use
case goal of reducing food waste, ensuring overall food quality, and increasing the
welfare of the consumer and production line worker.

Design Considerations
To achieve the overarching goal of preventing and minimizing food waste and
improving food production/storage quality control and safety concerns, from a tech‐
nological standpoint, we can use a wide variety of data sources, including many
different types of sensors and cameras (see Table 12-1) to accomplish a similar goal
(reducing food waste and improving food safety).

Table 12-1. Sensors to accomplish various food quality assurance goals
Goal Sensor(s)
Identifying food packaging leaks Gas, moisture, water level, camera
Inspecting food for contaminants or foreign objects Camera
Food doneness and quality control Camera, temperature, gas
Detecting food spoilage Environmental, chemical, camera
Identifying food allergens Environmental, chemical, gas
Human food safety equipment/apparel identi#cation Camera, audio
Detecting packaging expiration dates Camera
Packaging line cross-contamination Camera, chemical, thermal camera, X-ray, infrared, gas

412 | Chapter 12: Use Case: Food Quality Assurance

https://oreil.ly/weN5Q

7 See the Food and Agriculture Organization of the United Nations website.
8 See the US Department of Agriculture article, “Food Waste and Its Links to Greenhouse Gases and Climate

Change”.

When choosing your food quality assurance goal and use case, you will also need to
take into consideration how easy it will be to collect a large, robust, and high-quality
dataset for training your machine learning model. As we found in previous chapters
(especially in Chapter 7), your model is only as good as the quality of your input
data. If you wish to create a model to identify food safety apparel and equipment in
a specific factory, you may not be able to procure a sufficiently large enough dataset
to successfully train a highly accurate classification model on the first try. Of course,
with techniques like “active learning,” a subpar accuracy model can be deployed to
your factory, and over time the model can be improved upon with new ingested data,
and other environmental background information of the device’s location.

Also, consider where the device will be located and various sensor and device
requirements:

• Device location during initial data collection phase.•
• Device location postdeployment.•
• Battery-powered versus USB-powered versus permanent powerline.•
• Environmental requirements (i.e., water, fog, dirt, and other environmental fac‐•

tors) that could inhibit nominal usage of the sensor or destroy the device.
• How often the sensor will need to be replaced: does it have a degradation life•

cycle?
• Does the sensor need to be always on in order to achieve nominal operation•

parameters (i.e., gas sensor burn-in specifications)?
• How long the sensor will need to achieve nominal recording state, temperature•

heat-up time, etc.

Environmental and Social Impact
As the world population continues to grow, so does the amount of food waste we
produce. It is estimated that over one-third of the food produced globally is wasted.
That’s 1.3 billion tons of food each year! Not only is this a huge waste of resources,
but it also has a significant impact on the environment.7

Food waste is a major source of greenhouse gas emissions. When food rots in
landfills, it releases methane, a gas that is more potent than carbon dioxide. Reducing
food waste is one of the simplest and most effective ways to reduce our impact on the
planet and reduce the development of global climate change.8

Solution Design | 413

https://oreil.ly/ie2sk
https://oreil.ly/AMnGh
https://oreil.ly/AMnGh

In addition to the environmental benefits, reducing food waste can also have a
positive impact on our health. Spotting food spoilage or diseases early on could elim‐
inate outbreaks of food poisoning, salmonella, and other foodborne illnesses. And
reducing food allergens and cross-contamination will improve the lives of people
with deadly food allergies.

Increasing food safety and quality on food production lines benefits the physical
safety of the workers and the overall health of the end consumer. Quality control
inspectors play a vital role in ensuring that the food we eat is safe and of the highest
quality. By reducing waste of all resources in general, when food quality issues are
identified ASAP, we can save lives when food allergens are identified and removed.

Bootstrapping
Similarly to Benjamin Cabé’s “Building an Artificial Nose” on page 180, this chapter
is going to dive into an end-to-end solution for food quality assurance, particularly
pertaining to the reduction of food waste through identifying and classifying when
a fillet of salmon has been purchased (and is hopefully fresh) versus when it has
spoiled. Once we have collected our dataset with our “spoiled” and “purchase date/
fresh” gas sensor data samples, we will also collect a third class of data for our
environment’s “ambient” environment, to ensure that our trained machine learning
model can distinguish the gas data that is produced when the freshness of the fish
changes near the device.

These three classes will allow our classification machine learning model to identify
what type of fish is present in the range of the gas sensor onboard our target edge
platform. The edge device takes continuous raw samples from the gas sensor, and the
trained machine learning model infers and determines if the salmon fillet near the
device is close to its original purchase date or has spoiled. The resulting prediction
result and gas signal data, if it concludes that the salmon fillet is spoiled, will be sent
over a network connection, or stored locally on the device for further processing by a
human or in the cloud.

De"ne Your Machine Learning Classes
Table 12-2 shows potential combinations of use cases, sensor and data input types,
and the machine learning classes one would use to collect and label their training
and testing datasets. The use cases and their associated class labels are important for
the type of machine learning algorithm we’re employing in this chapter, specifically
“classification.” You can learn more about this in “Classification” on page 96.

414 | Chapter 12: Use Case: Food Quality Assurance

Table 12-2. Machine learning classes for food quality use cases
Use case Training data Class labels
Food spoilage detection Gas Spoiled, fresh, ambient environment
Food safety apparel detection Images (with bounding boxes) Safety apparel or PPE (personal protective equipment)
Detect package expiration date Images (with bounding boxes) Expiration date
Detect food packaging leaks Water level, humidity, moisture Nominal, leak
Food doneness/quality control Temperature, gas Done, undercooked, overcooked, ambient environment

In this chapter, we will select and build upon a food spoilage detection use case
using machine learning sensor data classification, and our project’s machine learning
classes will be “spoiled,” “purchase date,” and “ambient.”

Dataset Gathering
For technical and specific information about how to gather a clean, robust, and useful
dataset, see “Getting Your Hands on Data” on page 215. You can also utilize various
strategies on how to collect data from multiple sources to create your own unique
dataset for your use case:

• Combining public research datasets•
• Using existing sensor datasets from community-driven data collection sites like•

Kaggle
• Enlisting the help of your colleagues to collect samples for your collaborative•

Edge Impulse project

Edge Impulse
As described in “Edge Impulse” on page 368, you will need to create a free Edge
Impulse account to follow the instructions described in this chapter.

For further justification for using Edge Impulse for edge machine learning model
development, review “End-to-End Platforms for Edge AI” on page 162.

Edge Impulse public project
The public Edge Impulse project for this chapter is available.

Dataset Gathering | 415

https://edgeimpulse.com
https://edgeimpulse.com
https://oreil.ly/W3_vb

9 See the Bosch article on the BME688 sensor.

Choose Your Hardware and Sensors
In this book, we try to remain as device agnostic as possible, but we also need to
discuss how one can use an off-the-shelf, easy-to-use development kit in order to
create this use case’s solution. Thus, this book aims to make this hardware selection as
easy, affordable, and accessible as possible.

Because Edge Impulse already provides a large array of officially supported develop‐
ment platforms with various integrated sensor drivers and open source firmware, for
the simplicity of this project and the collection of our food quality assurance gas
sensor data, we will use an Arduino Nicla Sense ME with its onboard Bosch BME688
gas sensor.

Hardware con"guration
The Arduino Nicla Sense ME’s onboard BME688 gas sensor can detect volatile
organic compounds (VOCs), volatile sulfur compounds (VSCs), and other gases such
as carbon monoxide and hydrogen in the part per billion (ppb) range.9

Following is a list of some other sensor types to ponder to improve the accuracy of
your food quality assurance model for your specific environment, use case, project
budget, and more:

• Other gases: ammonia, methane, oxygen, CO2, etc.•
• Temperature•
• Pressure•
• Humidity•
• Radar•
• Air quality•

Sensor Fusion

Sensor fusion is a popular technique in embedded systems where
you combine data from different sensors to get a more encompass‐
ing or accurate view of the world around your device. Read more
about combining multiple sensors in “Combining Features and
Sensors” on page 93.

416 | Chapter 12: Use Case: Food Quality Assurance

https://oreil.ly/z1BzE
https://oreil.ly/tepYH
https://oreil.ly/z1BzE
https://oreil.ly/QrdR1

Data Collection
Using Edge Impulse, there are many options available to upload and label data to
your project; many of the most common data ingestion tools have previously been
described in “Data Collection” on page 370. The next sections will discuss the specific
data collection tools we will use for this chapter on food quality assurance.

Data Ingestion Firmware
In order to ingest data from our Arduino Nicla Sense ME, we will need to flash a data
ingestion sketch from the Arduino CLI onto our device.

Then, using the Edge Impulse CLI we will connect our device to our project and start
recording new data samples from the gas sensor onboard the Nicla Sense.

First, create a new directory on your computer, food, and a new file, food.ino, with the
code shown in Example 12-1.

Example 12-1. Arduino sketch to write Nicla Sense gas data to the serial terminal

/**
 * Configure the sample frequency. This is the frequency used to send the data
 * to the studio regardless of the frequency used to sample the data from the
 * sensor. This differs per sensors, and can be modified in the API of the sensor
 */
#define FREQUENCY_HZ 10

/* Include --- */
#include "Arduino_BHY2.h"

/* Constants --- */
#define INTERVAL_MS (1000 / FREQUENCY_HZ)
#define CONVERT_G_TO_MS2 9.80665f

/* Forward declarations -- */
void ei_printf(const char *format, ...);

/* Private variables --- */
static unsigned long last_interval_ms = 0;

Sensor gas(SENSOR_ID_GAS);

void setup() {
 /* Init serial */
 Serial.begin(115200);
 Serial.println("Edge Impulse sensor data ingestion\r\n");

 /* Init & start gas sensor */
 BHY2.begin(NICLA_I2C);
 gas.begin();

Dataset Gathering | 417

https://oreil.ly/YyOZ6
https://oreil.ly/rPI3S

}

void loop() {

 BHY2.update();
 delay(INTERVAL_MS);

 ei_printf("%.2f", gas.value());
 ei_printf("\r\n");
}

/**
* @brief Printf function uses vsnprintf and output using Arduino Serial
*
* @param[in] format Variable argument list
*/
void ei_printf(const char *format, ...)
{
 static char print_buf[1024] = { 0 };

 va_list args;
 va_start(args, format);
 int r = vsnprintf(print_buf, sizeof(print_buf), format, args);
 va_end(args);

 if (r > 0) {
 Serial.write(print_buf);
 }
}

Using the Arduino CLI, compile and upload your sketch to the Arduino Nicla Sense
ME board, as shown in Example 12-2.

Example 12-2. Arduino CLI commands

$ cd food
$ arduino-cli core install arduino:mbed_nicla
$ arduino-cli lib install Arduino_BHY2
$ arduino-cli lib install ArduinoBLE
$ arduino-cli compile --fqbn arduino:mbed_nicla:nicla_sense --output-dir . --verbose
$ arduino-cli upload --fqbn arduino:mbed_nicla:nicla_sense --input-dir . --verbose

Uploading Data to Edge Impulse
Now that we have flashed our data ingestion sketch to the Nicla Sense board, using
the Edge Impulse CLI (edge-impulse-data-forwarder), log in to your project and
connect your device to ingest your data from the serial port of your computer into
your Edge Impulse project (see Example 12-3).

418 | Chapter 12: Use Case: Food Quality Assurance

https://oreil.ly/YyOZ6

Example 12-3. Connect the Nicla Sense to your Edge Impulse project

$ edge-impulse-data-forwarder

Edge Impulse data forwarder v1.16.0
Endpoints:
 Websocket: wss://remote-mgmt.edgeimpulse.com
 API: https://studio.edgeimpulse.com
 Ingestion: https://ingestion.edgeimpulse.com

? Which device do you want to connect to? /dev/tty.usbmodemE53378312 (Arduino)
[SER] Connecting to /dev/tty.usbmodemE53378312
[SER] Serial is connected (E5:33:78:31)
[WS] Connecting to wss://remote-mgmt.edgeimpulse.com
[WS] Connected to wss://remote-mgmt.edgeimpulse.com

? To which project do you want to connect this device?
 AI at the Edge / Use Case: Food Quality Assuran [SER] Detecting data frequency...
[SER] Detected data frequency: 10Hz
? 1 sensor axes detected (example values: [9513]). What do you want to call them?
 Separate the names with ',': gas
? What name do you want to give this device? Nicla Sense
[WS] Device "Nicla Sense" is now connected to project "Use Case: Food Quality
Assurance"
[WS] Go to https://studio.edgeimpulse.com/studio/115652/acquisition/training
 to build your machine learning model!

Now, place your Nicla Sense ME close to your spoiled or fresh (date of purchase) food
(in this case, salmon) or somewhere in your room’s ambient environment.

From your project’s “Data acquisition” tab, set the following settings under “Record
new data,” then click “Start sampling.” This will tell your Nicla Sense board over
the serial connection to start recording 20 minutes (1,200,000 ms) of data from the
onboard BME688 gas sensor (see Figure 12-1). Make sure to enter the corresponding
sample label for your device’s current recording configuration:

Label
spoiled, purchase_date, or ambient

Sample length (ms.)
1200000

Sensor
Sensor with 1 axes (gas)

Frequency
10Hz

Dataset Gathering | 419

Figure 12-1. Data acquisition: record new data

Repeat this process until you have at least 20–60 minutes of data per machine
learning class between your training dataset and testing dataset (total).

Autosampling with Browser Automation

You can easily create an automation in your web browser’s devel‐
oper console with a JavaScript call to automatically reclick on the
“Start sampling” button in your Edge Impulse project every 22
minutes (or 1,320,000 ms):

const delay = ms => new Promise(res => setTimeout(res, ms));
while(1) {
 document.getElementById("input-start-sampling").click();
 await delay(1320000);
};

Cleaning Your Dataset
Review the tips provided in “Cleaning Your Dataset” on page 376, and then return to
this chapter.

Because we have recorded the gas sensor samples in 20-minute lengths, in order
to get a clearer view of the contents of each sample, we will split the samples into
multiple subsamples of 30,000 ms (or 29,880 ms in this case). From the “Data
acquisition” tab, select a sample’s three-dot drop-down and then click “Split sample”
(see Figure 12-2).

420 | Chapter 12: Use Case: Food Quality Assurance

Figure 12-2. Data acquisition: sample drop-down menu

You can likely fit four subsamples of around 30,000 ms in length from the “Split
sample” view; click “+ Add sample” to add more split segmentations, then click “Split”
(see Figure 12-3).

You can also crop your samples by selecting the “Crop sample” option from the
drop-down menu next to a sample name as shown in Figure 12-4.

Dataset Gathering | 421

Figure 12-3. Data acquisition: split sample

Figure 12-4. Data acquisition: crop sample

Dataset Licensing and Legal Obligations
Please review “Dataset Licensing and Legal Obligations” on page 376 for determining
your dataset’s licensing and legal obligations. Since we are directly uploading and
using data that we have collected from our home and personal Nicla Sense device

422 | Chapter 12: Use Case: Food Quality Assurance

over the serial port of our computer, we will not have any dataset licensing or legal
concerns to review.

However, if you are using gas data or other sensor data from a public source in
addition to your own gas data from a device like the Arduino Nicla Sense ME,
use due diligence to determine data usage rules and attribution requirements before
uploading the data to your training/testing datasets and using a resulting trained
model from that data.

DSP and Machine Learning Work#ow
Now that we have uploaded all of our images into our training and testing datasets,
we need to extract the most important features of our raw data using a digital signal
processing (DSP) approach, and then train our machine learning model to identify
patterns in our sensor data’s extracted features. Edge Impulse calls the DSP and ML
training workflow the “Impulse design.”

The “Impulse design” tab of your Edge Impulse project allows you to view and create
a graphical, simple overview of your full end-to-end machine learning pipeline. On
the far left is the raw data block where the Edge Impulse Studio will ingest and pre‐
process your data, and set your window increase and size. You can also downsample
or upsample your time series data from this view, if you have uploaded sample data
from devices that recorded at varying frequencies.

Next is the DSP block, where we will extract the most important features of our gas
data via an open source digital signal processing script, Flatten. Once we have gener‐
ated our data’s features, the learning block will train our neural network based on our
desired architecture and configuration settings. Finally, we can see the deployment
output information, including the desired classes we would like our trained machine
learning model to classify, “purchase_date,” “spoiled,” and “ambient.”

In your Edge Impulse project, set up your “Impulse design” tab the same as in
Figure 12-5, or as listed by selecting from the various block pop-up windows, then
click “Save Impulse”:

Time series data
• Window size: 10000 ms.•
• Window increase: 500 ms.•
• Frequency (Hz): 10•
• Zero-pad data: Checked [x]•

DSP and Machine Learning Work#ow | 423

Processing block
• Flatten•

Learning block
• Classification (Keras)•

Figure 12-5. Impulse design con"guration

Digital Signal Processing Block
For the project presented in this chapter, we will be using a digital signal process‐
ing algorithm that is included by default in the Edge Impulse Studio; this Flatten
processing block is prewritten and available for free use and free deployment from
the platform. The code used in the Flatten block is available in the Edge Impulse
GitHub repository “processing-blocks”. You can also learn more about the specifics of
various digital signal processing algorithms in “Digital Signal Processing Algorithms”
on page 88.

If you are familiar with writing your own digital signal processing code or would like
to use your own custom DSP blocks, please review the details provided in “Digital
Signal Processing Block” on page 380.

Set up your Flatten block by selecting the Flatten tab from the navigation bar and
select the same parameters as shown in Figure 12-6, or as listed by editing the various
checkboxes and text inputs. Then click “Save parameters.”

Scaling
• Scale axes: 0.001•

424 | Chapter 12: Use Case: Food Quality Assurance

https://oreil.ly/_dSjf
https://oreil.ly/_dSjf

Method
• Average: checked [x]•
• Minimum: checked [x]•
• Maximum: checked [x]•
• Root-mean square: checked [x]•
• Standard deviation: checked [x]•
• Skewness: unchecked []•
• Kurtosis: unchecked []•

Figure 12-6. Flatten block parameters con"guration

Now, click “Generate features” to view your data’s feature explorer (see Figure 12-7).

DSP and Machine Learning Work#ow | 425

Figure 12-7. Flatten block feature explorer

Machine Learning Block
We are now ready to train our edge machine learning model! There are multiple
ways to train your model in Edge Impulse, the easiest of which is the visual (or web
GUI) editing mode. However, if you are a machine learning engineer, expert, or if you
already have experiencing coding with TensorFlow/Keras, then you can also edit your
transfer learning block locally or in expert mode within the Edge Impulse Studio.

We can set the neural network architecture and other training configuration settings
of our project from the NN Classifier tab.

Visual mode
The easiest way to configure and set our machine learning training settings and
neural network architecture is through the Edge Impulse Visual mode, or the default
view when you select the NN Classifier tab under “Impulse design” in the navigation
bar (see Figure 12-8). Copy these settings into your neural network classifier’s block
configuration, then click “Start training”:

• Number of training cycles: 50•
• Learning rate: 0.0005•
• Validation set size: 20%•
• Auto-balance dataset: unchecked []•

426 | Chapter 12: Use Case: Food Quality Assurance

• Neural network architecture:•
— Dense layer (8 neurons)—
— Dense layer (4 neurons)—
— Flatten layer—

Figure 12-8. Neural Network settings

The dense layers are fully connected layers, the simplest form of a neural network
layer. We use this for processed data, from the output of the Flatten DSP block. The
flatten layer transforms multidimensional data into a single dimension. You need to
flatten data from a convolutional layer before returning. You can learn more about

DSP and Machine Learning Work#ow | 427

the neural architecture configuration in the Edge Impulse documentation. Once your
model training has completed, you can view the transfer learning results in the
“Model: Last training performance” view (see Figure 12-9).

Figure 12-9. Model: Last training performance

Do you already know how to write TensorFlow/Keras code in Python? Use the Expert
mode option in Edge Impulse to upload your own code or edit the existing block
code locally by selecting the three-dot drop-down button to the right of the “Neural
Network settings” block heading (see Figure 12-10).

428 | Chapter 12: Use Case: Food Quality Assurance

https://oreil.ly/J57H-

Figure 12-10. Expert mode editor

Testing the Model
In-depth details and descriptions of all model testing features available in Edge
Impulse are described in “Testing the Model” on page 392.

Testing the Model | 429

Live Classi"cation
From the “Live classification” tab, you can test individual test samples directly from
your connected Arduino Nicla Sense ME (see Figures 12-11 and 12-12). Connection
instructions were described in Example 12-3.

Figure 12-11. Live classi"cation with Arduino Nicla Sense ME

Figure 12-12. Live classi"cation with unlabeled testing result

430 | Chapter 12: Use Case: Food Quality Assurance

Or load an existing testing dataset image in “Classify existing test sample” to view this
sample’s extracted features and your trained model’s prediction results, as shown in
Figure 12-13.

Figure 12-13. Live classi"cation with preexisting labeled testing result

Model Testing
You can also bulk classify your testing dataset against your trained model by navigat‐
ing to the “Model testing” tab of your project. Learn more about this tab in “Model
Testing” on page 393.

Select “Classify all” to get a matrix of the inferencing results from your trained model
on your test dataset samples (see Figure 12-14).

Testing the Model | 431

https://oreil.ly/1Xc63

Figure 12-14. Model testing results

Deployment
Congratulations! You have just finished collecting and labeling your training and
testing datasets, extracting your data’s features with the DSP block, designing and
training your machine learning model, and testing your model with your testing
dataset. Now that we have all of the code and model information needed for inferenc‐
ing on our edge device, we need to flash the prebuilt binary to the device or integrate
the C++ library into our embedded application code.

Select the Deployment tab of your Edge Impulse project and follow the steps for one
of the many deployment options in the next sections to run your trained machine
learning model on your edge device. Many other deployment options are also avail‐
able, some of which have already been described in “Deployment” on page 395.

432 | Chapter 12: Use Case: Food Quality Assurance

10 See Jan Jongboom’s blog post, “Introducing EON: Neural Networks in Up to 55% Less RAM and 35% Less
ROM”, Edge Impulse, 2020.

Prebuilt Binary Flashing
From the Deployment tab, select your officially supported Edge Impulse development
platform under “Build firmware” and then select Build. You also have the option to
turn on/off the EON Compiler.10

Then, drag-and-drop or flash the resulting firmware application onto your officially
supported platform by following the instructions shown after clicking Build from the
Deployment tab. More in-depth instructions for flashing your prebuilt binary can be
found in the Edge Impulse documentation for your chosen development platform.

For this project, we will select the “Arduino library” deployment option to run our
trained model on the Arduino Nicla Sense ME (as shown in Figure 12-15).

Follow the instructions in the Arduino deployment documentation on the Edge
Impulse website to download and install software prerequisites.

First, import the downloaded Arduino library ZIP file into the Arduino IDE (see
Figure 12-16).

Deployment | 433

https://oreil.ly/B6Df7
https://oreil.ly/B6Df7
https://oreil.ly/O-ZFY
https://oreil.ly/9QfS6
https://oreil.ly/CmTyr
https://oreil.ly/CmTyr

Figure 12-15. Arduino library deployment option

Figure 12-16. Arduino IDE: import ZIP library "le

434 | Chapter 12: Use Case: Food Quality Assurance

Then, open the Arduino library example from the deployed Edge Impulse Arduino
library for the Nicla Sense within the Arduino IDE (see Figure 12-17).

Figure 12-17. Arduino IDE: select Nicla Sense

Now save the nicla_sense_fusion.ino sketch file somewhere on your computer (see
Figure 12-18).

Deployment | 435

Figure 12-18. Arduino IDE: save nicla_sense_fusion.ino sketch

Either compile and flash to the Nicla Sense directly from the Arduino IDE, or navi‐
gate to the directory where you stored the sketch on your computer in a command
line terminal, and run the Arduino CLI commands shown in Example 12-4.

Example 12-4. Arduino CLI commands for %ashing inferencing sketch

$ cd nicla_sense_fusion
$ arduino-cli compile --fqbn arduino:mbed_nicla:nicla_sense --output-dir . --verbose
$ arduino-cli upload --fqbn arduino:mbed_nicla:nicla_sense --input-dir . --verbose

View the inferencing results of your food quality assurance model running directly
on the edge on the Arduino Nicla Sense ME in a serial terminal on baud rate 115,200
(see Figure 12-19).

436 | Chapter 12: Use Case: Food Quality Assurance

Figure 12-19. Arduino Nicla Sense ME trained model inferencing results

GitHub Source Code
The full application source code used in this chapter, including the deployed library
from the public Edge Impulse project and completed application code, is available to
view and download in GitHub.

Iterate and Feedback Loops
Now that you have deployed the first iteration of your food quality assurance model,
you may be satisfied with the results and discontinue development here. However,
if you wish to further iterate over your model and further improve the accuracy
over time or with newly acquired equipment upgrades, for example, there are many
adaptations and variations to consider and improve upon for this project:

• Add more machine learning classes to your model for different types of food.•
• Create an enclosure for the device that ensures no food contaminants will impact•

the readings of the gas sensor.

Iterate and Feedback Loops | 437

https://oreil.ly/wPTwd
https://oreil.ly/91usE

• Add machine learning classes to specifically identify how many days the food•
item is past the purchase date.

• Add other sensor axes like temperature or humidity to the input training/testing•
data samples using sensor fusion (see “Sensor Fusion” on page 416).

• Run multiple food quality assurance models in parallel or on devices nearby for•
unrelated but similar goals, i.e., food spoilage and allergens detection.

Deep Dive: Perfect Toast Machine
The AI-powered toaster shown in Figure 12-20 uses odor to produce perfect toast!

Figure 12-20. Shawn Hymel’s toaster

Shawn Hymel used Edge Impulse and machine learning to build a device that makes
the perfect toast every time, regardless of bread thickness, composition, or starting
temperature. The model was trained on a variety of gas sensor data and uses regres‐
sion to predict when the toast will burn.

Shawn hacked an inexpensive toaster so that the toasting process could be controlled
by a microcontroller. The microcontroller continuously samples odor data from the
gas sensors, performs inference with the machine learning model, and stops the
toasting process 45 seconds before the toast would be burned.

This seemingly superfluous application of embedded machine learning has several
important implications.

First, we may not need to rely on timers and intuition to cook food in the future.
We might one day see kitchen appliances that have smart sensors built in to help us
serve the perfect dish and prevent food waste due to discarded overcooked meals.
Second, creating the perfect toast is a great demonstration of predictive maintenance.
Replace toast with machinery in this example. Can we train machine learning models

438 | Chapter 12: Use Case: Food Quality Assurance

to predict when parts of our car will go bad before they actually do? Downtime in
large-scale industrial equipment might cost thousands or millions of dollars, and
predictive maintenance can help identify problems before they become worse.

Check out the Perfect Toast Machine’s GitHub repository.

Related Works
As stated throughout this chapter, edge AI is an up-and-coming technology being
employed in a wide range of food quality assurance devices, from manufacturing
lines to consumer allergen detectors. The next sections describe various devices, data‐
sets, research articles, and books on the topic of edge AI for food quality assurance.

This book also notes the sources for various applications, methods, devices, and
quotes from various research and commercial adoption of food quality assurance
machine learning models and methods throughout the chapter in the footnotes on
each page.

Research
• Banús, Núria et al. “Deep Learning for the Quality Control of Thermoforming•

Food Packages”. Scienti"c Reports, 2021.
• Gerina, Federica et al. “Recognition of Cooking Activities Through Air Quality•

Sensor Data for Supporting Food Journaling”. SpringerOpen, 2020.
• Hassoun, Abdo et al. “Food Quality 4.0: From Traditional Approaches to Digital‐•

ized Automated Analysis”. Journal of Food Engineering, 2023.
• Hemamalini, V. et al. “Food Quality Inspection and Grading Using Efficient•

Image Segmentation and Machine Learning-Based System”. Journal of Food
Quality, 2022.

• Ishangulyyev, Rovshen et al. “Understanding Food Loss and Waste—Why Are•
We Losing and Wasting Food?”, National Library of Medicine, 2019.

• Iymen, Gokce et al. “Artificial Intelligence-Based Identification of Butter Varia‐•
tions as a Model Study for Detecting Food Adulteration”. Journal of Food Engine‐
eering, 2020.

• Jathar, Jayant et al. “Food Quality Assurance Using Artificial Intelligence: A•
Review Paper”. ResearchGate, 2021.

• Kaya, Aydin, and Ali Seydi Keçeli. “Sensor Failure Tolerable Machine Learning-•
Based Food Quality Prediction Model”. ResearchGate, 2020.

Related Works | 439

https://oreil.ly/DlRu4
https://oreil.ly/8Oaec
https://oreil.ly/8Oaec
https://oreil.ly/2Dj7L
https://oreil.ly/2Dj7L
https://doi.org/10.1016/j.jfoodeng.2022.111216
https://doi.org/10.1016/j.jfoodeng.2022.111216
https://oreil.ly/1z5z0
https://oreil.ly/1z5z0
https://oreil.ly/Vmwyg
https://oreil.ly/Vmwyg
https://doi.org/10.1016/j.ifset.2020.102527
https://doi.org/10.1016/j.ifset.2020.102527
https://oreil.ly/9WUim
https://oreil.ly/9WUim
https://oreil.ly/eGnDv
https://oreil.ly/eGnDv

• Kumar, G. Arun, “An Arduino Sensor-Based Approach for Detecting the Food•
Spoilage”. International Journal of Engineering and Applied Sciences and Technol‐
ogy, 2020.

• Nturambirwe, Jean et al. “Classification Learning of Latent Bruise Damage to•
Apples Using Shortwave Infrared Hyperspectral Imaging”. MDPI, 2021.

• Rady, Ahmed et al. “The Effect of Light Intensity, Sensor Height, and Spectral•
Pre-Processing Methods When Using NIR Spectroscopy to Identify Different
Allergen-Containing Powdered Foods”. National Library of Medicine, 2019.

• Sonwani, Ekta et al. “An Artificial Intelligence Approach Toward Food Spoilage•
Detection and Analysis”. National Library of Medicine, 2021.

• Watson, Nicholas J. et al. “Intelligent Sensors for Sustainable Food and Drink•
Manufacturing”. Frontiers in Sustainable Systems, 2021.

News and Other Articles
• Machine Learning for Automated Food Quality Inspection•
• NIRONE Sensors Show Promising Results on Detection on Food Allergen•

Identification
• Using AI to Increase Food Quality•
• What Is Industry 4.0?: How Industry 4.0 Technologies Are Changing•

Manufacturing
• The Best Technologies Against Food Allergies•
• Considering a Smart Toaster Oven? Get a Multi-Oven Instead•

440 | Chapter 12: Use Case: Food Quality Assurance

https://oreil.ly/ECgqq
https://oreil.ly/ECgqq
https://oreil.ly/2zmhw
https://oreil.ly/2zmhw
https://oreil.ly/vGyiR
https://oreil.ly/vGyiR
https://oreil.ly/vGyiR
https://oreil.ly/SImft
https://oreil.ly/SImft
https://oreil.ly/IaoqI
https://oreil.ly/IaoqI
https://oreil.ly/kIdsz
https://oreil.ly/O-GVd
https://oreil.ly/O-GVd
https://oreil.ly/OOj3H
https://oreil.ly/0YzAK
https://oreil.ly/0YzAK
https://oreil.ly/mKQyc
https://oreil.ly/TuZ3P

CHAPTER 13

Use Case: Consumer Products

Edge machine learning is used in consumer electronics and products to enable
devices to make decisions based on data without sending that data to the cloud. This
can save time and bandwidth and can also be used when data is sensitive and needs to
be kept private. Edge machine learning can also be used for consumer-focused tasks
like facial recognition, object detection, voice recognition, and sensor classification.
By analyzing and recognizing patterns in the consumer data being ingested on the
device before sending it to the cloud for further processing, products can quickly
adapt to the user’s needs: show the desired product usage, provide customized alerts
to the user about the product, and more.

By using edge AI, consumer products can integrate with and leverage the data of
onboard sensors for an almost unlimited amount of use cases. For example, a bike
can analyze the rider’s surrounding environment for traffic information and environ‐
mental data that can affect ride quality, and a smart fridge can automatically detect
when a product has almost been used up and add the product to a purchase list. In
this chapter, we will brainstorm various approaches to using edge AI for consumer
products, their associated sensor and device configurations, and a deep-dive tutorial
into our selected approach and use case solution.

Problem Exploration
Many consumer technology products are already constantly connected to the inter‐
net, such as smart home devices, security cameras, wearables, autonomous vehicles,
and drones. These devices need to process large amounts of data or send these large
amounts of data to be processed remotely in a cloud-based platform. Edge ML allows
these consumer products to respond quickly to changes in their environment, from
the massive amounts of sensor data that is already being ingested on the device,

441

without needing to send it to the cloud for further processing, which usually requires
a lot of time, battery usage, bandwidth consumption, etc.

Applying the techniques we have learned in this book, developing an edge machine
learning model for the purposes of end consumer electronics is an extremely broad
task. In order to narrow our focus, we will discuss a multitude of overarching, general
goals and then deep-dive into an implementation of one of them. An example of this
overarching consumer goal is a product that soothes a pet in some way. Goal-wise,
we can both generate a machine learning model that analyzes the pet’s water bowl
and alerts the human when the water is almost depleted, or we could integrate a
device into a pet’s collar to detect a certain kind of distressed noise or sound and
then provide soothing feedback. Both of these approaches accomplish the same goal,
soothing a pet through an end product device, but each could require a different
combination of machine learning classes and sensor inputs in order to solve.

Goal Setting
Creating useful and efficient consumer products with edge AI technology is useful
as the world evolves. Consumers will begin to expect their technology to get smarter
and smarter, but without infringing on their data privacy rights. There are almost an
endless amount of options for consumer products to integrate their onboard sensor
data with an edge machine learning model. By bringing the intelligence gained from
these onboard sensors to edge AI, consumer products can achieve better overall
performance, increased battery life (depending on the use case), and overall increased
end user satisfaction and user-friendliness/accessibility.

Solution Design
In this chapter, we are choosing to design and implement a low-cost, efficient,
and easy-to-train edge AI model for a consumer products use case pertaining to a
bicyclist monitoring device with an onboard accelerometer sensor. However, an edge
AI model for detecting hazards and monitoring a bicyclist’s safety does not only need
to be created with an accelerometer. By using the principles and design workflow
presented in this chapter and throughout this book, many other types of machine
learning models and applications can be implemented for a bicyclist monitoring
device, including using camera image input to monitor surrounding environment
information and potential collisions/traffic accidents, identifying crashes via incom‐
ing audio signal data, and more.

442 | Chapter 13: Use Case: Consumer Products

What Solutions Already Exist?
An abundance of smart, edge AI consumer products already exist on the market or
have been recently released from prototyping stages. Smart kitchen appliances like
the June Oven and the Haier Series 6 come equipped with AI technology that can
help you with everything from meal planning to cleaning up. Mobile phone users
around the world are locked into their hardware vendor’s ecosystem of choice with
AI wearables like the Apple Watch, Samsung Smartwatch, or Fitbit.

Health devices are increasingly being developed for the end user in mind; the Oura
Ring is equipped with sensors that track your sleep, activity, and overall health,
allowing you to get a better understanding of your daily habits. The future of many
consumer technological products will include the integration of onboard sensors
and real-time edge AI inferencing, which improves both the performance of those
products and their usefulness and attractiveness to the end consumer, while reducing
their power consumption.

Solution Design Approaches
We can take our problem statement and design a solution via many different
approaches, a few of which are described below:

Pet soother and monitor
As a pet owner, it’s important to be aware of your pet’s vital signs and overall
health. By monitoring your pet’s vital signs with edge AI devices, you can be
alerted to any changes in their health or behaviors and take appropriate action.
There are various sensor inputs available to help you monitor your pet’s vital
signs, including camera sensors and smart water bowls. You can also use an
AI-powered collar to track your pet’s location and activity levels. These smart pet
products can help ease our anxiety about our pet’s health and well-being and give
us peace of mind.

Bicycling monitor
Many forms of transportation are being outfitted with edge AI integration,
including bikes, with manufacturers offering a variety of features that make
commuting safer and more enjoyable. The potential for data collection via
sensor-equipped bikes or add-on consumer products is immense. With various
sensor configurations, bikes could collect data on the terrain, weather, and traffic
conditions in real time, allowing for a more comprehensive understanding of
conditions on the ground and in the cyclist’s surrounding environment.

Additionally, bikes could be equipped with sensors that detect when they are
being ridden in an unsafe or illegal manner, such as weaving in and out of traffic
or riding on the wrong side of the road. Other sensor combinations could also
be integrated to enable automated theft detection and help to make biking a safer

Solution Design | 443

https://oreil.ly/W_aZa
https://oreil.ly/yS58F
https://ouraring.com
https://ouraring.com

1 See the Edge Impulse article, “Bike Rearview Radar”.
2 See “Digital Child’s Play: Protecting Children from the Impacts of AI” from UN News.
3 See UNICEF’s article, “Good Governance of Children’s Data”.
4 See “Artificial Intelligence for Children” from the World Economic Forum.

overall experience, inside and outside of a city center. Finally, bikes equipped
with a rearview camera or radar sensor would also be able to detect traffic behind
the rider, potentially avoiding accidents by alerting the user to move out of the
way, speed up, or slow down depending on the incoming traffic movement/infor‐
mation or visual obstacles.1

Children’s toys
There are three main categories of interactive children’s toys incorporating edge
AI technology: teaching, responding to emotions, or monitoring health and
safety of the child and their environment. Teaching toys are designed to help
children learn new skills or information. They often come in the form of edu‐
cational games or puzzles that can help children practice things like counting,
shapes, and colors. Emotional response toys are designed to interact with chil‐
dren and respond to their emotions. These toys can listen for audio cues like
screaming or crying, and they may even recognize facial expressions or other
visual cues that relate to a child’s emotional state. Safety and health monitoring
toys are designed to help keep children safe and healthy. These toys can detect
when fingers are about to touch a hot stove, for example, or they may monitor
a child’s heart rate and breathing. Some of these toys even come equipped with
GPS tracking in case a child gets lost, further increasing the parent’s comfort
level.

However, the advancements in edge AI technology requires the promotion of
very reasonable and ethical guidelines for AI usage in any toy, device, or service
that interacts with children. Unfortunately, the more sophisticated AI technology
becomes, the harder it is to regulate, and the possibility of AI being used to
exploit children, their emotions, and their personal data increases.2 The regula‐
tion of AI technology is a complex issue, and one we won’t discuss in detail
in this chapter; however there are many government agencies and companies
doing research and policy development into this exact field of study, as there is
no easy solution.3 Given the potentially harmful consequences for children using
AI technology falling into the wrong hands, it is clear that some form using
regulation is necessary.4

444 | Chapter 13: Use Case: Consumer Products

https://oreil.ly/12O4I
https://oreil.ly/2rc83
https://oreil.ly/EzNvZ
https://oreil.ly/aHH3E

5 See the Edge Impulse blog, “Estimate Weight From a Photo Using Visual Regression in Edge Impulse”.

Home appliances
Edge AI–enabled home appliances like a refrigerator can detect when food is
running low and automatically order more, so you never have to worry about
running out of milk again. They can also track your eating habits, so you can get
insights into your nutritional intake, and even cook food for you perfectly.

But it’s not just fridges that are getting smarter. There are all sorts of smart cook‐
ing devices that are using computer vision and other sensor inputs to perfectly
cook food with visual size estimation5 and automated temperature control. And
coffee machines are using edge machine learning to personalize coffee according
to the user’s preferences. Even laundry machines are using machine learning to
identify different types of clothes and adjust the wash and dry cycles according to
the inference results.

Any one of the previously described use case solution approaches are consumer
products that promote this chapter’s use case goal of designing ethical and valuable
consumer products for widespread use and ensuring that the data ingested regarding
the end user is used ethically and responsibly.

Design Considerations
To achieve the overarching goal of designing a useful, ethical, and accessible con‐
sumer edge AI product, from a technological standpoint, we can use a wide variety of
data sources, including many different types of sensors and cameras to accomplish a
similar goal (see Table 13-1).

Table 13-1. What sensors can be used for each use case?
Goal Sensor(s)
Bicyclist crash/theft detector Accelerometer, audio, radar, camera
Pet soother Camera, audio, radar
AI-powered oven Infrared camera, temperature, gas
Health-monitoring wearable PPG, heart rate, ECG, temperature, water/sweat level
Home security and automation Camera, audio
Robotic children’s toy Camera, audio, accelerometer, gyroscope, radar
Automated laundry machine Camera, chemical, gas, color, light intensity

“Getting Your Hands on Data” on page 215 discusses further approaches to sensor
data gathering and dataset collection.

Solution Design | 445

https://oreil.ly/qfZxT

6 See “Artifical Intelligence for Children” from the World Economic Forum.

Also, consider the following points during your design process and brainstorming
sessions:

• Who are the end users of the product?•
• Who are the primary stakeholders in the product?•
• How could this product be used maliciously or unethically?•
• Where is the data being stored? Are inference results being sent back to a cloud•

platform?
• How is the consumer/end user being made aware of how the incoming sen‐•

sor data is being used on the device and in the cloud or over a networking
connection?

Environmental and Social Impact
While edge AI advances in consumer technology can make our lives easier, it also
comes with its own set of problems, including being inaccessible or limited in use by
a large part of the population, leaving a portion of end users unable to take advantage
of the advances in much of edge AI technology. One way that manufacturers are
trying to alleviate these issues is by making devices that are more user friendly and
accessible for everyone. One such example is that some companies are now making
devices to reduce the burden of home chores. These devices can assist the elderly
or disabled with tasks that they may find difficult, such as cleaning or cooking. This
not only helps to make their lives easier, but it can also help to prevent accidents
or injuries. Companies are also working to reduce technology or general waste by
alerting customers beforehand of potential issues or repairs that their device may
need. This not only helps to keep devices in good working condition, but it can also
help to prevent harm to children that may interact with them.

Putting Children and Youth FIRST Checklist6

The following checklist (FIRST) is a great starter set of ideas and limits to put in place
when you are brainstorming new edge AI product ideas for consumer consumption,
even if the product’s intended audience/users are not children:

Fair
Ethics, bias, and liability

Inclusive
Accessibility, neuro-differences, and feedback from kids/target age group

446 | Chapter 13: Use Case: Consumer Products

https://oreil.ly/aHH3E

Responsible
Age-appropriate and developmental stage-appropriate; reflects the latest learning
science and is designed with target age in mind

Safe
Does no harm; cybersecurity and addiction mitigation

Transparent
Can explain how the AI works and what it is being used for to a novice or lay
audience

Bootstrapping
This use case chapter is going to dive into an end-to-end solution for creating a
consumer product edge AI model, particularly pertaining to a device that will moni‐
tor and protect a bicyclist through traffic and collision alerts. To create our initial
bicyclist monitoring model, we will collect samples for the machine learning classes
“idle,” “sudden stop,” and “nominal” from our edge device’s accelerometer sensor.

These three classes will allow our classification machine learning model to identify
what type of motion events are being experienced by the bicyclist in real time. The
edge device takes continuous raw samples from the accelerometer, and the trained
machine learning model infers and determines if the motion detected by the device
is idle, performing a turn, experiencing a sudden stop (perhaps indicative of a crash),
or traveling on uneven terrain. For the resulting prediction outcome, anomaly score,
and accelerometer signal data, if the device concludes that the anomaly score is high,
or a sudden stop was experienced, this information will be immediately alerted to the
device end user through an audio output notification or LED warning, and the data
will also be sent over a network connection or stored locally on the device for further
processing by a human or in the cloud.

De"ne Your Machine Learning Classes
Table 13-2 shows potential combinations of use cases, sensor and data input types,
and the machine learning classes one would use to collect and label their training and
testing datasets. The use cases and their associated class labels are important for the
types of machine learning algorithms we are employing in this chapter, specifically
“classification” and “anomaly detection.” You can learn more about these algorithms
in “Classification” on page 96 and “Anomaly detection” on page 99.

Solution Design | 447

Table 13-2. Machine learning classes for bicyclist safety use cases
Use case Training data Class labels
Detect bicycle crash Accelerometer Nominal, anomaly (or a speci#ed “crash” label if the data

already exists)
Monitor oncoming tra!c Camera (with

bounding boxes)
Car, bicycle, motorcycle, other tra!c objects

Monitor cyclist’s blind spots Radar Nominal, object in close proximity to cyclist
Listen for car alarms, crashes, and
other tra!c sounds

Audio Background, noise, car alarm, car crash, car honk, human
voice/yelling

In this chapter, we will select and build upon a consumer bicyclist monitoring device
use case for machine learning sensor data classification, and our project’s initial
machine learning classes will be “idle,” “sudden stop,” and “nominal,” pertaining to the
eventual use case of “detecting bicycle crashes.” However, because you likely do not
want to specifically get into a bicycle crash to record and upload these data samples,
we will employ the use of the machine learning techniques classification and anomaly
detection to achieve this use case goal.

Dataset Gathering
For technical and specific information about how to gather a clean, robust, and useful
dataset, see “Getting Your Hands on Data” on page 215. You can also utilize various
strategies on how to collect data from multiple sources to create your own unique
dataset for your use case:

• Combining public research datasets•
• Using existing sensor datasets from community-driven data collection sites like•

Kaggle
• Enlisting the help of your colleagues to collect samples for your collaborative•

Edge Impulse project

Edge Impulse
As described in “Edge Impulse” on page 368, you will need to create a free Edge
Impulse account to follow the instructions described in this chapter.

For further justification for using Edge Impulse for edge machine learning model
development, review “End-to-End Platforms for Edge AI” on page 162.

448 | Chapter 13: Use Case: Consumer Products

https://edgeimpulse.com
https://edgeimpulse.com

Edge Impulse public project
Each use case chapter of this book contains a written tutorial to demonstrate and
achieve a complete end-to-end machine learning model for the described use case.
However, if you would like to just get straight to the point and see the exact data and
model that the authors have developed for the chapter in its final state, you may do so
by navigating to the public Edge Impulse project for this chapter.

You may also directly clone this project, including all of the original training and
testing data, intermediate model information, resulting trained model results, and all
deployment options by selecting the Clone button at the top right side of the Edge
Impulse page (see Figure 13-1).

Figure 13-1. Clone Edge Impulse public project

Choose Your Hardware and Sensors
In this book, we try to remain as device agnostic as possible, but we also need to
discuss how one can use an off-the-shelf, easy-to-use development kit in order to
create this use case’s solution. Thus, this book aims to make this hardware selection as
easy, affordable, and accessible as possible.

Because Edge Impulse already provides a large array of officially supported develop‐
ment platforms with various integrated sensor drivers and open source firmware,
for the simplicity of this project and the collection of our accelerometer data for a
bicyclist consumer product use case, we will use a combination of our mobile phone
with the Edge Impulse mobile client and a Nordic Semi Thingy:53 with the nRF Edge
Impulse mobile phone application for data ingestion and model deployment.

However, if you do not have the exact hardware described in this chapter, you can
consult the Edge Impulse documentation for other suitable boards with various
officially supported sensors for easy data ingestion and deployment. Or you can bring
your own development platform in and your own sensor combinations, and continue
following along with this chapter after you have created a running device firmware

Dataset Gathering | 449

https://oreil.ly/iuJp9
https://oreil.ly/RKAWb
https://oreil.ly/RKAWb
https://oreil.ly/WfU0M
https://oreil.ly/OnTtw
https://oreil.ly/OnTtw
https://oreil.ly/zQryl

for initial sensor data ingestion (the easiest way being with the Edge Impulse data
forwarder).

Hardware con"guration
The Nordic Semi Thingy:53’s onboard accelerometer inertial measurement unit
(IMU) and/or your mobile phone’s internal IMU will be used to detect motion events
on the bike, affixed to your bike’s front handlebars.

Following is a list of some other sensor types to ponder in order to improve the accu‐
racy of your consumer bicyclist monitoring model for your specific environment, use
case, project budget, and more:

• Gyroscope•
• Infrared, night vision, or thermal camera•
• Radar•
• Audio•

Data Collection
Using Edge Impulse, there are many options available to upload and label data to
your project; many of the most common data ingestion tools have previously been
described in “Data Collection” on page 370. The next sections will discuss the specific
data collection tools we will use for this chapter on consumer products for a bicyclist
monitoring use case.

Data Ingestion Firmware
In order to ingest data from our Thingy:53, we will need to flash the Edge Impulse
firmware onto our device by following the instructions in the documentation. Then,
using the Edge Impulse CLI or the nRF Edge Impulse mobile phone application
(see “nRF Edge Impulse mobile phone application” on page 451), we will connect
our device to our project and start recording new accelerometer data samples from
onboard the Thingy:53 or from our mobile phone.

Mobile phone
One of the easiest ways to upload new accelerometer data is to connect your mobile
phone directly to your Edge Impulse project and record accelerometer data from
your phone’s integrated IMU. You can find instructions for connecting your mobile
phone in the Edge Impulse documentation (see Figure 13-2).

450 | Chapter 13: Use Case: Consumer Products

https://oreil.ly/MXDZM
https://oreil.ly/MXDZM
https://oreil.ly/bHbVN
https://oreil.ly/bHbVN
https://oreil.ly/DSrv7
https://oreil.ly/UoiqJ

Figure 13-2. Connecting your mobile phone to your Edge Impulse project

nRF Edge Impulse mobile phone application
First, download and install the Nordic nRF Edge Impulse app for your iPhone or
Android phone. Then, follow the instructions in the Edge Impulse documentation to
log in to the nRF Edge Impulse app with your Edge Impulse account and connect
your Thingy:53 to your project.

To record and upload a new data sample into your project, click on the “+” button
at the top right of the app. Select your sensor, type in the sample label, and choose a
sample length and frequency, then select Start Sampling (see Figure 13-3).

Dataset Gathering | 451

https://oreil.ly/2w5nO
https://oreil.ly/Q_bVH
https://oreil.ly/orK3a

Figure 13-3. nRF Edge Impulse phone application data acquisition

Continue collecting data samples on your bike for all three of the machine learning
classes, “idle,” “sudden stop,” and “nominal.” Please be careful and pay attention to
your surroundings while collecting your data!

Cleaning Your Dataset
Review the tips provided in “Cleaning Your Dataset” on page 376, and then return to
this chapter.

452 | Chapter 13: Use Case: Consumer Products

Because we have recorded the gas sensor samples in 30-second (30,000 ms) lengths,
we will split the samples into multiple subsamples of 10 seconds (10,000 ms) long.
From the “Data acquisition” tab, select a sample’s three-dot drop-down and then click
“Split sample.” You can likely fit three subsamples of around 10,000 ms in length
from the Split sample view; click the “+ Add Segment” button to add more split
segmentations, then click Split (see Figure 13-4).

Figure 13-4. Data acquisition: split sample

You can also crop your samples by selecting the “Crop sample” option from the
drop-down menu next to a sample name, as described in “Cleaning Your Dataset” on
page 420.

Dataset Licensing and Legal Obligations
Please review “Dataset Licensing and Legal Obligations” on page 376 for determining
your dataset’s licensing and legal obligations. Since we are directly uploading and
using data that we have collected from our home and personal mobile phone or
Nordic Thingy:53 device over the serial port of our computer or the Nordic nRF Edge
Impulse mobile phone app, we will not have any dataset licensing or legal concerns to
review.

However, if you are using accelerometer data or other types of sensor data from a
publicly sourced dataset in addition to your own data from your mobile phone or a
device like the Nordic Thingy:53, use due diligence to determine data usage rules and
attribution requirements before uploading the data to your training/testing datasets
and using a resulting trained model from that data.

Dataset Gathering | 453

https://oreil.ly/RZxE0
https://oreil.ly/E91_-
https://oreil.ly/VxQKE
https://oreil.ly/VxQKE

DSP and Machine Learning Work#ow
Now that we have uploaded all of our accelerometer motion samples into our training
and testing datasets, we need to extract the most important features of our raw data
using a digital signal processing (DSP) approach, and then train our machine learn‐
ing model to identify patterns in our sensor data’s extracted features. Edge Impulse
calls the DSP and ML training workflow the “Impulse design.”

The “Impulse design” tab of your Edge Impulse project allows you to view and create
a graphical, simple overview of your full end-to-end machine learning pipeline. On
the far left is the raw data block where the Edge Impulse Studio will ingest and pre‐
process your data, and set your window increase and size. You can also downsample
or upsample your time series data from this view, if you have uploaded sample data
from devices that recorded the accelerometer data at varying frequencies.

Next is the DSP block, where we will extract the most important features of our accel‐
erometer data via an open source digital signal processing script, “Spectral analysis.”
Once we have generated our data’s features, the learning block will train our neural
network based on our desired architecture and configuration settings. Finally, we can
see the deployment output information, including the desired classes we would like
our trained machine learning model to classify: idle, sudden stop, and nominal.

In your Edge Impulse project, set up your “Impulse design” tab the same as in
Figure 13-5, or as listed by selecting from the various block pop-up windows, then
click “Save Impulse”:

Time series data
• Window size: 5000 ms.•
• Window increase: 250 ms.•
• Frequency (Hz): 62.5•
• Zero-pad data: Checked [x]•

Processing block
• Spectral Analysis•

Learning block
• Classification (Keras)•
• Anomaly detection (K-Means)•

454 | Chapter 13: Use Case: Consumer Products

Figure 13-5. Impulse design con"guration

Digital Signal Processing Block
For the project presented in this chapter, we will be using a digital signal processing
algorithm that is included by default in the Edge Impulse Studio; this Spectral Analy‐
sis processing block is prewritten and available for free use and free deployment from
the platform. The code used in the Spectral Analysis block is available in the Edge
Impulse GitHub repository “processing-blocks”. You can also learn more about the
specifics of the spectral analysis algorithm in “Spectral analysis” on page 91.

If you are familiar with writing your own digital signal processing code or would like
to use your own custom DSP blocks, please review the details provided in “Digital
Signal Processing Block” on page 380.

Set up your Spectral Analysis block by selecting the “Spectral features” tab from the
navigation bar and selecting the same parameters as shown in Figure 13-6, or as listed
in the following by editing the various checkboxes and text inputs:

Filter
• Scale axes: 1•
• Type: none•

DSP and Machine Learning Work#ow | 455

https://oreil.ly/oAvIn
https://oreil.ly/oAvIn

Spectral power
• FFT length: 16•
• Take log of spectrum?: checked [x]•
• Overlap FFT frames?: checked [x]•

Figure 13-6. Spectral features block parameters

456 | Chapter 13: Use Case: Consumer Products

Now click “Save parameters.” In order to use the advanced anomaly detection features
available in Edge Impulse, check the “Calculate feature importance” check box on the
“Generate features” view (see Figure 13-7).

Figure 13-7. Generate features with feature importance

DSP and Machine Learning Work#ow | 457

https://oreil.ly/bQUyh
https://oreil.ly/bQUyh

Now, click “Generate features” to view your data’s feature explorer and feature impor‐
tance list (see Figure 13-8).

Figure 13-8. Spectral features block: feature explorer

458 | Chapter 13: Use Case: Consumer Products

Machine Learning Blocks
We are now ready to train our edge machine learning model! There are multiple
ways to train your model in Edge Impulse, the easiest of which is the visual (or web
GUI) editing mode. However, if you are a machine learning engineer, expert, or if you
already have experiencing coding with TensorFlow/Keras, then you can also edit your
transfer learning block locally or in expert mode within the Edge Impulse Studio.

We can set the neural network architecture and other training configuration settings
of our project from the NN Classifier tab.

Visual mode
The easiest way to configure and set our machine learning training settings and
neural network architecture is through the Edge Impulse Visual mode or the default
view when you select the NN Classifier tab under “Impulse design” in the navigation
bar (see Figure 13-9). Copy these settings into your neural network classifier’s block
configuration, then click “Start training”:

• Number of training cycles: 30•
• Learning rate: 0.0005•
• Validation set size: 20%•
• Auto-balance dataset: unchecked []•
• Neural network architecture:•

— Dense layer (20 neurons)—
— Dense layer (10 neurons)—

You can learn more about the neural architecture configuration in the Edge Impulse
documentation. Once your model training has completed, you can view the transfer
learning results in the “Model: Last training performance” view (see Figure 13-10).

See Chapters 11 and 12 for more information about editing your neural network
block locally or in expert mode (especially “Machine Learning Block” on page 381).

DSP and Machine Learning Work#ow | 459

https://oreil.ly/oMVFd
https://oreil.ly/oMVFd

Figure 13-9. Neural Network settings

460 | Chapter 13: Use Case: Consumer Products

Figure 13-10. Model: Last training performance

DSP and Machine Learning Work#ow | 461

7 See the article “Anomaly Detection (K-Means)” from Edge Impulse.

Anomaly detection
Neural networks are great at pattern recognition, but they have difficulty with new,
unseen data. This is because they are only trained on a specific set of data, so if you
give them something new, they will not be able to properly classify it.7

Learn more about the anomaly detection technique used in this chapter in “Anomaly
detection” on page 99.

Select the “Anomaly detection” tab from the navigation bar, then click the “Select
suggested axes” button to automatically select the suggested feature importance axes
for our use case (see Figure 13-11).

Figure 13-11. Anomaly detection: Select suggested axes

462 | Chapter 13: Use Case: Consumer Products

https://oreil.ly/kGM6C

Then click on “Start training” to view the resulting “Anomaly explorer” (as shown in
Figure 13-12).

Figure 13-12. Anomaly detection: Anomaly explorer

Testing the Model
In-depth details and descriptions of all model testing features available in Edge
Impulse are described in “Testing the Model” on page 392.

Live Classi"cation
From the “Live classification” tab, you can test individual test samples directly
from your connected Nordic Thingy:53 (see Figures 13-13 and 13-14). Connection
instructions are described in “Data Ingestion Firmware” on page 450.

Testing the Model | 463

Figure 13-13. Live classi"cation with Nordic #ingy:53

Figure 13-14. Live classi"cation for unlabeled testing result

Or load an existing testing dataset image in “Classify existing test sample” to view this
sample’s extracted features and your trained model’s prediction results, as shown in
Figure 13-15.

464 | Chapter 13: Use Case: Consumer Products

Figure 13-15. Live classi"cation with preexisting, labeled testing result

Model Testing
You can also bulk classify your testing dataset against your trained model by navigat‐
ing to the “Model testing” tab of your project. Learn more about this tab in “Model
Testing” on page 393.

Select “Classify all” to get a matrix of the inferencing results from your trained model
on your test dataset samples (see Figure 13-16).

Figure 13-16. Model testing tab results

Testing the Model | 465

https://oreil.ly/Ngn8a

8 See the Edge Impulse blog, “Introducing EON: Neural Networks in Up to 55% Less RAM and 35% Less
ROM”.

Although the model testing results tab here doesn’t look promising
for real-world usage, as we have only uploaded a few minutes of
training data, the more data we uploaded the better the model
would perform in the real world, and on our testing dataset.
You can learn more about improving your model and achieving
a production-ready model for a consumer product in Chapter 9.

Deployment
Congratulations! You have just finished collecting and labeling your training and
testing datasets, extracting your data’s features with the DSP block, designing and
training your machine learning model, and testing your model with your testing
dataset. Now that we have all of the code and model information needed for inferenc‐
ing on our edge device, we need to flash the prebuilt binary to the device or integrate
the C++ library into our embedded application code.

Select the Deployment tab of your Edge Impulse project and follow the steps for one
of the many deployment options in the next sections to run your trained machine
learning model on your edge device. Many other deployment options are also avail‐
able, some of which have already been described in “Deployment” on page 395.

Prebuilt Binary Flashing
From the Deployment tab, select your officially supported Edge Impulse development
platform under “Build firmware,” and then select Build. You also have the option to
turn on/off the EON Compiler.8

Then, drag-and-drop or flash the resulting firmware application onto your officially
supported platform by following the instructions shown after clicking Build from the
Deployment tab. More in-depth instructions for flashing your prebuilt binary can be
found in the Edge Impulse documentation for your chosen development platform.

GitHub Source Code
The full application source code used in this chapter, including the deployed library
from the public Edge Impulse project and completed application code, is available to
view and download from the GitHub repository.

466 | Chapter 13: Use Case: Consumer Products

https://oreil.ly/kXvlt
https://oreil.ly/kXvlt
https://oreil.ly/socrt
https://oreil.ly/rKSDT
https://oreil.ly/bjJw1

Iterate and Feedback Loops
Now that you have deployed the first iteration of your food quality assurance model,
you may be satisfied with the results and discontinue development here. However,
if you wish to further iterate over your model and further improve the accuracy
over time or with newly acquired equipment upgrades, for example, there are many
adaptation and variations to consider and improve upon for this project:

• Iterate on the design of the device to make it more sensitive to crashes (change•
the hardware used in this guide with a more sensitive sensor, or higher-end
CPU).

• Utilize active learning strategies to improve the algorithms used in this model,•
the DSP, and the machine learning neural network. Further strategies are also
described in Chapters 9 and 10.

• Upload more training and testing data for the existing model classes and also•
create new classes to train in your model.

• Evaluate the performance of the device regularly and make improvements•
accordingly over time; your model is only as good as the locations/environments
the training data was recorded from.

• A camera instead of an accelerometer could be mounted on the handlebars of the•
bike.

• Move the location of the device mounted on the bike from the handlebars to the•
head and see how the device performs.

Related Works
As stated throughout this chapter, edge AI is an up-and-coming technology being
employed in a wide range of consumer products, from toys that monitor your child’s
health and bikes that monitor incoming traffic and potential accidents, to home
appliances that automatically cook your food to the perfect doneness. The next
sections describe various news articles, products, research articles, and books on the
topic of edge AI for consumer products.

This book also notes the sources for various applications, methods, devices, and
quotes from various research and consumer products utilizing edge machine learning
models throughout the chapter in the footnotes on each page.

Related Works | 467

Research
• Digital Child’s Play: Protecting Children from the Impacts of AI, UN News, 2021.•
• WEF Artificial Intelligence for Children, World Economic Forum, 2022.•
• Good Governance of Children’s Data, Unicef.•
• FTC: Children’s Privacy•
• Children’s Online Privacy Protection Rule (“COPPA”)•
• “Examining Artificial Intelligence Technologies Through the Lens of Children’s•

Rights”. EU Science Hub, 2022.
• EU AI Act•
• Fosch-Villaronga, E. et al. “Toy Story or Children Story? Putting Children and•

Their Rights at the Forefront of the Artificial Intelligence Revolution”. Springer‐
Link, 2021.

• Morra, Lia et al. “Artificial Intelligence in Consumer Electronics”. IEEE, 2020.•
• Sane, Tanmay U. et al. “Artificial Intelligence and Deep Learning Applications in•

Crop Harvesting Robots: A Survey”. IEEE, 2021.
• Mohanty, Saraju P. “AI for Smart Consumer Electronics: At the Edge or in the•

Cloud?” IEEE Consumer Electronics Magazine, 2019.
• Go, Hanyoung et al. “Machine Learning of Robots in Tourism and Hospital‐•

ity: Interactive Technology Acceptance Model (iTAM)—Cutting Edge”. Emerald
Insight, 2020.

• Xu, Tiantian et al. “A Hybrid Machine Learning Model for Demand Prediction•
of Edge-Computing-Based Bike-Sharing System Using Internet of Things”. IEEE,
2020.

• Bike Rearview Radar, Edge Impulse.•
• Silva, Mateus C. et al. “Wearable Edge AI Applications for Ecological Environ‐•

ments”. MDPI, 2021.
• Kakadiya, Rutvik et al. “AI Based Automatic Robbery/Theft Detection using•

Smart Surveillance in Banks”. IEEE, 2019.
• Ogu, Reginald Ekene et al. “Leveraging Artificial Intelligence of Things for•

Anomaly Detection in Advanced Metering Infrastructures”. ResearchGate, 2021.

News and Other Articles
• “AI’s Potential for Consumer Products Companies”. Deloitte, 2022.•
• “Consumer Goods: Increase Product Innovation and Revenue with Edge AI”.•

Gartner, 2021.

468 | Chapter 13: Use Case: Consumer Products

https://oreil.ly/0RRNY
https://oreil.ly/aHH3E
https://oreil.ly/9Dy2B
https://oreil.ly/6v-hh
https://oreil.ly/RP-BI
https://oreil.ly/etUlC
https://oreil.ly/etUlC
https://oreil.ly/ERfTX
https://oreil.ly/FlrVc
https://oreil.ly/FlrVc
https://oreil.ly/58KzE
https://oreil.ly/tNhwh
https://oreil.ly/tNhwh
https://oreil.ly/pZToK
https://oreil.ly/pZToK
https://oreil.ly/dxShS
https://oreil.ly/dxShS
https://oreil.ly/UKtYx
https://oreil.ly/UKtYx
https://oreil.ly/AI9cL
https://oreil.ly/MdkaY
https://oreil.ly/MdkaY
https://oreil.ly/SDPYG
https://oreil.ly/SDPYG
https://oreil.ly/Iesae
https://oreil.ly/Iesae
https://oreil.ly/IOYQR
https://oreil.ly/ZEn7F

• “Innovate with Edge AI”. Gartner, 2019.•
• “Edge Machine Learning: From PoC to Real-World AI Applications”. Strong,•

2021.
• “Ducati and Lenovo Continue Partnership to Lead Innovation in MotoGP”.•

BusinessWire, 2022.

Related Works | 469

https://oreil.ly/I-lhF
https://oreil.ly/x_0ja
https://oreil.ly/YcOrE

Index

A
aborting a project, 301
accelerometer, 8, 63, 450
accuracy (algorithmic performance metric),

323
acoustic sensors, 60
active learning, 239-240, 245, 351
active learning loop, 351
adaptive cruise control, 273
advanced driver-assistance system (ADAS), 272
AI for Good, 18, 403
Alexa, 321
algorithm bias, 48, 293
algorithmic performance metrics, 323-330

accuracy, 323
confusion matrix, 324
error metrics, 328-330
F1 score and MCC, 327
loss, 323
mean average precision, 330
positive/negative rates, 326
precision and recall, 324-326
ROC and AUC, 327-328

algorithms, edge AI, 85-121
anomaly detection, 99
automated machine learning, 150
cascades, 113
classical machine learning, 103-106
classification, 96
clustering algorithms, 99
combining algorithms, 113
conditionals and heuristics, 101
data visualization tools, 144
deep learning, 106-113, 147-148

developing baseline algorithm, 303
development, 143-153
development team roles, 130
development tools, 143-153
dimensionality reduction, 100
ensembles, 113
experiment tracking tools, 149
fail-safe design, 115
feature engineering, 85-95
feature extractors, 113
interactive computing environments, 145
machine learning inference, 154-156
machine learning operations, 151-153
math and DSP libraries, 154
mathematical/scientific computing libraries,

143
model cards for, 312
model compression/optimization, 148
multimodal models, 114
object detection/segmentation, 97-99
on-device training, 119-121
optimization for edge devices, 116-119
postprocessing algorithms, 114
refining an algorithm over time, 351-352
regression, 97
riskiest components of system, 307
running algorithms on-device, 153-157
supporting multiple deployed algorithms,

352
transformation, 100
types by functionality, 96-100
types by implementation, 101-115

aliasing, 88
Allan, Alasdair, 23

471

allergens, food contamination and, 412
Amazon

Alexa certification process, 321
cloud-based filesystems, 221

annotation tools, labeling with, 241
anomaly detection

algorithms, 99
balance and, 254
bicyclist monitor use case, 462
drift detection, 347

application design (see designing edge AI appli‐
cations; developing edge AI applications)

application loop, 279
application metrics, 348
application processor, 69, 83
application-specific integrated circuits (ASICs),

78
architectural design, 278-292

basic application architectures, 279-286
basic flow, 281
cascade to the cloud, 288
cascading flow, 283-285
complex application architectures/design

patterns, 286-291
ensemble flow, 281
graceful degradation, 291
hardware/software/services, 278
heterogeneous cascade, 286
human-in-the-loop, 290
intelligent gateway, 289
multidevice cascade, 287
parallel flow, 282
sensor fusion flow, 285
series flow, 283
working with design patterns, 291

architecture(s)
deep learning model architectures, 110
hardware system, 68-70

Arduino, 158
Arduino Nicla Sense ME, 416-420, 422,

430-437
Arduino Nicla Sense ME onboard BME688 gas

sensor, 416
area under the curve (AUC), 328
artificial intelligence (generally)

defined, 6-8
edge AI versus regular AI, 19-23

artificial nose, 180

ASICs (application-specific integrated circuits),
78

assisted labeling, 237, 243-244
asymmetrical distribution of errors, 234
AUC (area under the curve), 328
audio files, 247
audio signals, 56
audio traps, 392
augmentation

automation versus, 185
data augmentation, 261-263

automated hardware testing, 161
automated labeling, 236, 243-244
automated machine learning (AutoML), 150
automation

augmentation versus, 185
data cleaning and, 252

automobiles (see self-driving cars)
autonomous weapons systems, 295
autosample, on web browser, 420

B
balance

anomaly detection and, 254
fixing issues, 253

bandwidth
BLERP and, 14
data sourcing and, 217

battery capacity, 333
best practices, edge AI versus regular AI, 23
bias, 48

application design and, 292-295
in labeling, 240
machine learning and, 183
responsible design and, 45
simple example, 183

bicyclist monitor use case, 443, 447-448
(see also consumer products, edge AI-

enabled use case)
anomaly detection, 462
bootstrapping, 447
data cleaning, 452
data collection, 450
data ingestion firmware, 450-452
dataset gathering, 448-453
dataset licensing/legal obligations, 453
defining machine learning classes, 447
deployment, 466
DSP block, 454-458

472 | Index

Edge Impulse account for, 448
Edge Impulse Visual mode, 459
GitHub source code, 466
hardware configuration, 450
hardware/sensor choices, 449
iterate and feedback loops, 467
machine learning blocks, 459-463
mobile phone for data ingestion, 450
model testing, 463-466
nRF Edge Impulse mobile phone applica‐

tion, 451
prebuilt binary flashing, 466
testing from Live classification tab, 463
testing from Model testing tab, 465

Bier, Jeff, 14
binary data format, 247
binary neural networks (BNNs), 118
biological sensors, 65
biosignals sensors, 66
BioTrac Band, 29
bird sound classification, 402
black boxes, 46-49
BLERP (bandwidth, latency, economics, relia‐

bility, privacy), 14-18
and edge AI decision process, 173-175
bandwidth element, 14
economics element, 15
latency element, 15
privacy element, 17
reliability element, 16
things that don’t work well on the edge, 175

BME688 gas sensor, 416
BNNs (binary neural networks), 118
boards, processor, 79-81
bootstrapping

defined, 302
developing baseline algorithm, 303
developing edge AI applications, 302-306
edge AI-enabled consumer products, 447
food quality assurance use case, 414
initial iteration of hardware design, 304
key tasks, 302
responsible AI review, 305
uses for, 302
wildlife monitoring use case, 366

bounding boxes, 97
brownfield hardware, 218
brownfield projects, 27
business feasibility, 189-191

proving benefit, 189
understanding constraints, 190

button (sensor), 64
bytecode compilers, 155

C
C++, 138
Cabé, Benjamin, 180
Callosciurus finlaysonii (Finlayson’s squirrel),

366
camera traps, 357

(see also wildlife monitoring use case)
defined, 358
spotting rare wildlife with, 38

Capable Computing, 23
capacitive touch sensors, 64
cars (see self-driving cars)
cascades, 113
cascading flow, 283-285
chemical sensors, 65, 66
China, persecution of Uyghurs in, 49
classical machine learning, 103-106
classical machine learning algorithms, deep

learning versus, 112
classification algorithms, 96, 323, 363
cleaning data (see data cleaning)
cloud computing

cascade to the cloud, 288
edge compute versus, 176-178

cloud providers, 140
cloud storage, 221
clustering, 106
clustering algorithms, 99
code generation compilers, 155
code, writing to fix errors, 252
color sensors, 65
combinatorial explosion, 103
communication plan

mid-deployment, 341
postdeployment, 342
predeployment, 341

compilers
bytecode compilers, 155
code generation compilers, 155

compression
algorithm development tools, 148
optimization and, 117-119
to manage cost/power consumption con‐

straints of edge devices, 21

Index | 473

computational performance
and optimization of algorithms for edge

devices, 116-119
duty cycle, 333
energy consumption, 333
floating-point operations, 332
latency, 332
memory, 330
metrics, 330-334
thermal energy, 334

computer vision algorithms, 92
conditional logic, 101
confidence thresholds, 325
confusion matrix, 324
connectivity issues, 217
constraints

understanding, 198
when developing AI applications, 190

consumer products, edge AI-enabled use case,
441-469
design considerations, 445
environmental/social impact, 446
existing solutions, 443
goal setting, 442
learning resources, 467
problem exploration, 441
solution design, 442-467
solution design approaches, 443-445

containerization, 139
convolutional models, 109
COVID-19 pandemic, 209
cropping images, 89
cross-contamination, 412
cross-validation, 259, 334
crowdsourced labeling, 242
cultural norms, 355
curating splits, 260
current sensors, 65
cutoff frequency, 90

D
data augmentation, 261-263
data bias, 48
data capture, 141
data cleaning, 248-255

amending values, 251
auditing your dataset, 249-251
bicyclist monitor dataset, 452
evaluation/automation, 252

excluding records, 252
fixing balance issues, 253
fixing value issues, 251-252
food quality assurance use case, 420-421
substituting values, 251
wildlife monitoring use case, 376
writing code to fix errors, 252

data collection
connecting device directly to Edge Impulse

for, 371
wildlife monitoring use case, 370-371

data errors, 231-233
data exploration, 299
data explorer (Edge Impulse tool), 376
data formatting, 246-248

manifest files, 248
types of formats, 55-58, 246

data forms, 220
data loggers, 141
data logging, 305
data pipelines, 142, 263-265
data preparation, for dataset, 235-265

data augmentation, 261-263
data cleaning, 248-255
data pipelines, 263-265
feature engineering, 255
formatting, 246-248
labeling, 235-246
splitting data, 256-261

data quality, 225-234
common data errors, 231-233
drift and shift, 233
ensuring representative datasets, 225-227
label noise, 229-231
representation and time, 227
reviewing data by sampling, 227-229
uneven distribution of errors, 234

data requirements, estimating, 211-214
data retrieval, 220-224
data samples, 344-346
data scientists, 130
data sourcing

capturing data at the edge, 217-219
data forms, 220
for dataset construction, 215-219
overcoming data limitations, 217
sourcing publicly available image datasets,

368
synthetic data, 219

474 | Index

data splitting, 256-261
analyzing subgroups, 335
cross-validation, 334
k-fold cross-validation, 259
methods for, 258-260
metrics and distribution, 335
pitfalls, 260
training/validation/testing splits, 334
when to use the testing split, 257

data storage, 220-224
collecting metadata, 223
getting data into stores, 222

data storage/management, 142
data streams, 86-88
data versioning, 222
data visualization tools, 144
data, working with, 141-142

data capture, 141
data pipelines, 142
data storage/management, 142
IoT device management, 141

data-centric machine learning, 210-211
dataset construction (see dataset gathering)
dataset feasibility, 191
dataset gathering, 201-266

bicyclist monitor use case, 448-453
building over time, 265
capturing data at the edge, 217-219
cleaning dataset for wildlife monitoring use

case, 376
data cleaning, 376
data, ethics, and responsible AI, 206-209
data-centric machine learning, 210-211
dataset limitations, 375
domain expertise and, 205
elements, 201-203
ensuring data quality, 225-234
ensuring domain expertise, 209
estimating data requirements, 211-214
food quality assurance use case, 415-423
hardware and, 305
iNaturalist for, 372-375
minimizing unknowns, 208
obstacles to improvement, 266
overcoming data limitations, 217
practical workflow for estimating data

requirements, 213-214
preparing data, 235-265
properties of ideal dataset, 203-205

sourcing data, 215-219
sourcing publicly available image datasets,

368
storing/retrieving data, 220-224
uploading data to Edge Impulse, 377
wildlife monitoring use case, 363, 367-378

datasets
analyzing subgroups, 335
defined, 104
ideal properties of, 203-205
versioning, 222

debug probe, 160
decision process, for using edge AI, 172-186

business feasibility, 189-191
dataset feasibility, 191
deployment concerns, 173-178
describing a problem, 172
determining feasibility, 186-199
disadvantages of edge compute, 176-178
making a final decision, 196
ML benefits and drawbacks, 178-185
moral feasibility, 187-189
planning a project, 197-199
practical exercise, 185
technological feasibility, 192-196
things that don’t work well on the edge, 175

decision trees, 102, 105
deep learning, 106-113

classical ML algorithms versus, 112
model architectures, 110
open source frameworks, 147-148

deep learning accelerators, 77
degradation of performance, 353

(see also drift)
deny list, 291
dependency management, 139, 307
deploying edge AI applications, 313, 338-343

bicyclist monitor use case, 466
food quality assurance use case, 432-436
livestock monitoring system example, 314
livestock monitoring use case, 314
mid-deployment tasks, 341
postdeployment tasks, 342
predeployment tasks, 339-341
wildlife monitoring use case, 395-401

deployment bias, 294
deployment report, 342
design principles, 270-271
design, values in, 43

Index | 475

designing edge AI applications, 267-296
accounting for choices in design, 292-296
architectural design, 278-292
bias in, 292-295
common risks leading to failure, 272
design deliverables, 295
design principles, 270-271
product and experience design, 268-278
scoping a solution, 271-274
setting design goals, 274-278
systemic goals, 274
technical goals, 276
tracking weightlifting workouts, 268
upgrading an existing edge solution, 276
values-based design goals, 277

developing edge AI applications, 297-315
aborting a project, 301
bootstrapping, 302-306
deployment, 313
exploration, 298-300
feedback loops, 307-309
goal setting, 300-301
interdependency, 307
iterative workflow for, 297-315
support, 315
test and iterate phase, 306-313

development boards (dev boards)
embedded software electronics, 159
for processors, 79-81

development platforms, end-to-end, 162
device firmware or OS, 280
digital filtering, 90
digital signal processing (DSP), 88-93

bicyclist monitor use case, 454-458
defined, 12
development tools, 146
digital signal processing block, 380
filtering, 90
image feature detection, 92
raw sensor data and, 20
resampling, 88
spectral analysis, 91
wildlife monitoring use case, 379-395

digital signal processors (DSPs), 74
dimensionality reduction algorithms, 100
direct access binary data, 247
discrete coprocessors, 70
discrimination, responsible design and, 45
distributed computing, 140

distribution changes, 346-348
diversity

costs of, 128
four core areas of, 126
team building and, 126-128

diversity sampling, 240
Docker, 140
dogfooding, 322
Dohmke, Thomas, xvii
domain expertise, 205

datasets and, 205, 209
team building and, 124-126

domain experts
as bias source, 240
team building and, 129

downsampling, 88
drift, 233

and need for support for edge AI applica‐
tions, 315, 343

and need to collect data continuously, 265
summary statistics to identify, 346

DSP (see digital signal processing)
DSP engineer, 130
duty cycle, 333

E
economics (BLERP element), 15
EDA (exploratory data analysis), 299
edge AI (generally)

BLERP, 14-18
cost/power consumption constraints, 21
decision to use or not, 172-186
defined, 10-11
determining feasibility of project, 186-199
diversity of device types, 22
key terms, 1-13
limits of learning from feedback, 21
on-device training, 19
real-world applications (see real-world edge

AI applications)
reasons to use, 13-23
regular AI versus, 19-23
sensor data as focus of, 20
socially beneficial uses, 18

edge AI for Good, 18, 403
edge computing

defined, 4
disadvantages of, 176-178

edge devices, defined, 4

476 | Index

Edge Impulse, xxi
data cleaning, 376
data collection from, 371
EON™ Tuner, 385-389
Expert mode, 385
label noise solutions, 230
library creation, 396
licensing and legal obligations, 376, 422, 453
uploading data to, 377
Visual mode, 426

Edge Impulse Studio, 368
edge machine learning (see machine learning)
edge servers, 81
edge, defined, 3-6
electromagnetic field (EMF) meter, 65
electromagnetic sensors, 64
ElephantEdge, 30-32
elephants, smart collars for, 30-32
embedded (term), 1-3
embedded hardware tools, 158
embedded Linux, 77, 161
embedded machine learning, defined, 12
embedded ML engineers, 131
embedded software engineering/electronics,

157-162
automated hardware testing, 161
development boards, 159
embedded hardware tools, 158
embedded Linux, 161
emulators/simulators, 160
software tools, 159

embedded software engineers, 131
embedded software tools, 159
embedding models, 109
EMF (electromagnetic field) meter, 65
emotional response toys, 444
emulators, 160
end-to-end development platforms, 162
energy consumption metrics, 333
ensemble flow, 281
ensembles, 113
environmental sensors, 65
environmental/social impacts

edge AI-enabled consumer products, 446
food quality assurance use case, 413

EON Tuner, 385-389
error metrics, 328-330

mean absolute error, 329
mean squared error, 329

root mean squared error, 329
errors

uneven distribution of, 234
writing code to fix, 252

ethical AI
camera traps and, 365
changing legal standards, 356
dataset construction and, 206-209
during iterative development, 312
edge AI-enabled consumer products, 446
evaluation and, 319
evolving cultural norms, 355
food quality assurance use case, 413
law versus ethics, 356
long-term support, 278, 353-356
moral feasibility of projects, 187-189
new information and ethical re-evaluation,

354
performance degradation, 353
psychological safety and, 51
responsible design and, 43-46
reviewing for ethical issues before deploy‐

ment, 340
termination criteria, 354
values in design, 43
values-based design goals, 277
wildlife monitoring use case, 364-366, 403

ethical feasibility review, 187
ethics and fairness expert, 129
ethics, law versus, 356
evaluating edge AI systems, 317-338

analyzing subgroups, 335
computational/hardware performance,

330-334
cross-validation, 334
individual components, 319
integrated systems, 320
multiple metrics for, 336
performance calibration, 337
real-world testing, 321-322
responsible AI, 337
simulated real-world testing, 320
stages at which evaluation is needed,

317-319
synthetic testing data, 336
techniques for evaluation, 334-337
training/validation/testing splits, 334
useful metrics, 322-334
ways to evaluate a system, 319-322

Index | 477

event cameras, 61
experiment tracking, 149
Expert mode (Edge Impulse option), 385
explainability, 47, 105, 182
exploration, in development process, 298-300

data exploration, 299
major tasks, 298

exploratory data analysis (EDA), 299
extrospective data

defined, 66
examples, 67

F
F1 score, 327
fairness, responsible design and, 45
false accept rate, 276
false negative rate (FNR), 326
false positive rate (FPR), 326
false reject rate, 276
Faster Objects, More Objects (FOMO), 293
fault detection, 27-29
feasibility of edge AI project, determining,

186-199
business feasibility, 189-191
dataset feasibility, 191
moral feasibility, 187-189
technological feasibility, 192-196

feature engineering, 85-95
combining features and sensors, 93-95
data preparation and, 255
digital signal processing algorithms, 88-93
working with data streams, 86-88

feature extractors, 113
feature scaling, 95
features (dataset element), 201, 235
federated learning

on-device training, 121
TensorFlow Federated, 157

feedback
edge AI limitations, 21
solving problems with, 350
types of feedback from deployed systems,

344-349
feedback loops, 307

(see also testing and iteration)
bicyclist monitor use case, 467
in development process, 307-309
food quality assurance use case, 437-439
performance calibration, 337

wildlife monitoring use case, 401-403
field of view, 60
field programmable gate arrays (FPGAs), 78
filtering, 90
Finlayson’s squirrel (Callosciurus finlaysonii),

366, 373
FIRST (fair, inclusive, responsible, safe, trans‐

parent) checklist, 446
first responders, intelligent wearables for, 29
fitness tracker, 8-10
flash memory, 70
flex sensors, 64
floating-point operations per second (FLOPS),

332
floating-point unit (FPU), 69
flow sensors, 64
FNR (false negative rate), 326
FOMO (Faster Objects, More Objects), 293
food quality assurance use case, 407-440

bootstrapping, 414
data collection, 417
data ingestion firmware, 417
dataset cleaning, 420-421
dataset gathering, 415-423
dataset licensing/legal obligations, 422
defining machine learning classes, 414
deployment, 432-436
design considerations, 412
DSP approach, 423-425
DSP block, 424
Edge Impulse and, 415
environmental/social impact, 413
existing solutions, 410
factors of food spoilage, 409
GitHub source code, 437
goal setting, 409
hardware configuration, 416
hardware/sensor choice, 416
iterate and feedback loops, 437-439
machine learning block, 426-428
model testing, 429-437
prebuilt binary flashing, 433-436
problem exploration, 407
solution design, 409-415
solution design approaches, 410-412
solution exploration, 408
testing from Live classification tab, 430, 463
testing from Model testing tab, 431
uploading data to Edge Impulse, 418-420

478 | Index

force sensors, 63
forest fires, power line fault detection for pre‐

venting, 27-29
formatting of data, 246-248
Fourth Industrial Revolution, 408
FPGAs (field programmable gate arrays), 78
FPR (false positive rate), 326
FPU (floating-point unit), 69
frame rate, 86
framing problems, 195
frequency domain, 91
frequency response, 90
fully connected models, 108

G
gas sensors, 66, 180, 410, 416
generalization, defined, 10
Global Positioning System (GPS), 63
goal setting, 300-301
“good enough” performance, 22
Google Speech Commands dataset, 211
greenfield hardware, 218
greenfield projects, 26
greenhouse gases, food waste and, 413
gyroscopes, 63

H
hardware description language (HDL), 156
hardware engineers, 131
hardware, edge AI, 55-84

architectural design and, 278
architecture of, 68-70
automated testing, 161
bicyclist monitor use case, 449
configuration, 370
data logging and, 305
diversity of device types, 22
embedded hardware tools, 158
initial iteration of hardware design, 304
processors, 68-84

(see also processors for edge AI)
sensors/signals/data sources, 55-68
sustainability issues, 354
unique challenges of projects, 199
unique design challenges of, 199
wildlife monitoring use case, 370

harmful technology, 49-52
costs of negligence, 50
mitigating societal harms, 51

HDL (hardware description language), 156
Heraclitus of Ephesus, 233
Herzberg, Elaine, 207
heterogeneous cascade, 286
heuristics (rule-based algorithms)

AI algorithms and, 102
combining with ML, 286
downsides, 103
ML solutions versus, 178
reasons to use, 179
weaknesses, 179

high-pass filters, 90
Hikvision surveillance camera, 49
hiring, for edge AI, 132-134
histograms, 250
home appliances, 445
human bias, 48
human error, label noise and, 231
human role, ML augmentation of, 185
Hutiri, Wiebke (Toussaint), 43
hyperparameter optimization, 150

I
ideal solution, as focus when determining feasi‐

bility, 186
IDEs (integrated development environments),

159
if statements, 101
image feature detection, 92
image sensors, 60-62
images, 247

as data, 57
resizing/cropping, 89
sourcing publicly available image datasets,

368
implicit association, 120
improving a live application, 350-353

refining an algorithm over time, 351-352
solving problems with feedback, 350
supporting multiple deployed algorithms,

352
Impulse runner, 401
IMU (inertial measurement unit), 63
iNaturalist

for dataset creation, 372-375
limitations on datasets constructed from,

375
inductive proximity sensors, 65
industrial designers, 132

Index | 479

Industry 4.0, 408
inertial measurement unit (IMU), 63
inference

alternative methods, 156
bytecode compilers, 155
code generation compilers, 155
defined, 9
edge device and, 154-156
hardware description language, 156
interpreters, 154
model optimization and, 156
training versus, 20
virtual machines, 155

integrated coprocessors, 69
integrated development environments (IDEs),

159
intelligence

defined, 7
intelligent wearables

protecting first responders with, 29
interactive children’s toys, 444
interactive computing environments, 145
Internet of Things (IoT)

defined, 4
device management, 141

interpolation, 88
interpretability, 105
interpreter (runtime), 154
introspective data, 66
iteration, 309

(see also testing and iteration)
improving wildlife monitoring accuracy

with, 401-403
in practice, 309-312
updating plans, 311

Izoelektro RAM-1 (monitoring device), 27

J
Jupyter Notebook, 145

K
k-fold cross-validation, 259, 335
Kalman filter, 105
Kelcey, Mat, 184
kernels

in edge machine learning context, 112
inference and model optimization, 156
optimized implementations for, 154

keyword-spotting applications, 211-214

knowledge distillation, 118
known unknowns, 208
Kubernetes, 140

L
label noise, 229-231
labeled data, 182
labeling, 235-246

annotation tools, 241
assisted/automated, 243-244
bias in, 240
crowdsourced, 242
defined, 182
problems in working with edge AI data, 218
problems not requiring, 237
semi-supervised/active learning algorithms,

237-240, 245
tools for, 241-246

labels (dataset element), 202
Lacuna Space, 402
latency, 15, 332
law, ethics versus, 356
leakage, 257, 260
learning resources, 134

practical content, 134
theoretical content, 135

legal issues
changes in legal standards, 356
deployment bias, 294
Edge Impulse licensing and legal obliga‐

tions, 376, 422, 453
ethics versus law, 356

libraries
math and DSP libraries, 154
mathematical/scientific computing libraries,

143
licensing, Edge Impulse, 376, 422, 453
LIDAR sensors, 61
linear encoders, 63
Linux

embedded, 77, 161
system-on-chip devices, 81

livestock monitoring system, 314
living things

edge AI use cases involving, 36-39
spotting rare wildlife with trail cameras, 38

load cells, 64
logistic regression, 105
logs, 348

480 | Index

LoRa, 31
loss functions, 323
loss metrics, 323
low-pass filters, 90

M
machine learning (ML)

automated, 150
automation versus augmentation, 185
benefits and drawbacks, 178-185
bicyclist monitor use case, 447, 459-463
classical, 103-106
combining rule-based algorithms with ML

algorithms, 286
cost/power consumption constraints of edge

devices, 21
data-centric, 210-211
deep learning and, 106-113
defined, 8-10
defining classes for wildlife monitoring use

case, 367
drawbacks, 182-184
EON™ Tuner, 385-389
interpretability and explainability, 105
operators and kernels, 112
pipelines, 151
reasons to use, 180
rule-based solutions versus, 178
sensors, 167
when to use, 184
wildlife monitoring use case, 379-389

machine learning (ML) practitioners, 131
machine learning operations (MLOps),

151-153, 265
MAE (mean absolute error), 329
magnetometers, 65
mAh (milliamp hours), 333
manifest files, 142, 248
manual labeling, 236
mAP (mean average precision), 330
margin of error, 228
Mars rover, 15
MATLAB, 146
Matplotlib, 144, 250
Matthews correlation coefficient (MCC), 327
MCUs (see microcontroller units)
mean absolute error (MAE), 329
mean average precision (mAP), 330
mean squared error (MSE), 329

medical imaging
BLERP analysis, 176
COVID-19 pandemic and, 209
problem description, 175

memory (computational performance metric),
330

metadata
collecting, 223
datasets and, 202
storage, 142

metrics, 322
(see also algorithmic performance metrics;

error metrics)
for evaluating edge AI systems, 322-334
identifying for deployment, 339
monitoring during deployment, 342

Michelangelo (Uber learning platform), 410
microcontroller units (MCUs), 70-75

DSPs, 74
high-end, 73-74
low-end, 71-72
power consumption, 72
SoCs versus, 111
thermal energy and, 334

milliamp hours (mAh), 333
ML (see machine learning entries)
MLflow, 149
MLOps (machine learning operations),

151-153, 265
MLOps engineers, 132
mobile broadband modems, 141
mobile devices

data ingestion for bicyclist monitor, 450
deployment of model to, 397

modality, 58
model cards, 312
model optimization

algorithm development tools, 148
inference and, 156

monitoring
postdeployment, 342-349
understanding/controlling systems, 34-36

moral feasibility of projects, 187-189
motion sensors, 62
moving average filters, 90
MSE (mean squared error), 329
multi-device architectures, 82-83
multidevice cascade, 287
multimodal models, 114

Index | 481

N
nearest neighbors, 106
negligence, costs of, 50
neural architecture search (NAS), 150
neural networks, 106-113
neural processing units (NPUs), 77

(see also deep learning accelerators)
Nicla Sense, 416-420, 422, 430-431
noise filtering, 90
nonvolatile memory, 70
Nordic Semi Thingy:53, 450
normalization, 95
NPUs (neural processing units), 77

(see also deep learning accelerators)
nRF Edge Impulse mobile phone application,

451
NumPy, 143

O
object detection algorithms, 97-99
objectives, of deployment, 339
objects, tracking/interpreting state of, 32
off die processors/components, on die versus,

69
oil rigs, predictive maintenance on, 35
on-device learning, 157
on-device training, 19, 119-121

machine learning inference, 154-156
math and DSP libraries, 154
on-device learning, 157

OpenCollar Edge tracking collar, 30-32
OpenMV IDE, 146
operating systems, software engineering tools

and, 137
operator fusion, 118
operators, in edge ML context, 112
optical sensors, 64
optimization

algorithm development tools, 148
choice of algorithm, 116
compression and, 117-119
inference and model optimization, 156

orchestration, 140
out-of-distribution input, 104
outliers, label noise identification and, 230
over-the-air updates, 121
overfitting

defined, 108
detecting with data splits, 256

oversampling, 254

P
packaging, smart, 33
pandas, 143, 249
parallel flow, 282
particulate matter sensors, 66
passive infrared (PIR) motion sensor, 173
people, edge AI use cases involving, 36-39
Performance Calibration (Edge Impulse utility),

337, 392
performance degradation, 353

(see also drift)
peripherals, 70
personalization, 120
pet soother/monitor, 443
photosensors, 64
pipelines

data, 142, 263-265
ML, 151

PIR (passive infrared) motion sensor, 173
pixels, 57
planning an edge AI project, 197-199

defining acceptable performance, 198
understanding time/resource constraints,

198
Poetry (Python tool), 139
position sensors, 62
postdeployment monitoring, 342-349

application metrics, 348
data samples, 344-346
distribution changes, 346-348
outcomes, 349
types of feedback from deployed systems,

344-349
user reports, 349

postprocessing algorithms, 114
power consumption

duty cycle and, 333
MCUs and, 72

power line fault detection, 27-29
precision (algorithmic performance metric),

324-326
confidence thresholds, 325
defined, 324

predictive maintenance
at oil rigs, 35
on-device training, 119

preparing data, 235-265

482 | Index

pressure sensors, 64
privacy

BLERP element, 17
evolving cultural norms, 355

probability distributions, 325
problem description, 172
problems, components of, 268
processors for edge AI, 68-84

boards/devices for, 79-81
deep learning accelerators, 77
devices and workloads, 84
digital signal processors, 74
FPGAs and ASICs, 78
hardware architecture, 68-70
microcontrollers and digital signal process‐

ors, 70-75
multi-device architectures, 82-83
on die versus off die, 69
system-on-chip devices, 75-77

product bias, 292
product engineering (team role), 131
product managers, 130
program managers, 130
project managers, 130
project planning, 197-199

defining acceptable performance, 198
understanding time/resource constraints,

198
pruning, 118
psychological safety, 51
Putting Children and Youth FIRST checklist,

446
Python, 138, 143
PyTorch, 147-148

Q
quality assurance (QA) engineers, 132
quality assurance (QA) testing, 321

(see also data quality)
bias

in quality control system, 240
quality control system, bias in, 240
quality of data (see data quality)
quantization, 117

R
radiation sensors, 64
RAIL (Responsible AI Licenses), 52
RAM-1 (monitoring device), 27

Rams, Dieter, 270
random access memory (RAM), 69, 330
random forests, 105
Ray Tune, 150
read-only memory (ROM), 70, 330
real-time locating systems (RTLS), 63
real-time operating system (RTOS), 159
real-world edge AI applications, 25-53

building applications responsibly, 41-52
common use cases, 25-32
edge AI-enabled consumer products,

441-469
food quality assurance, 407-440
greenfield/brownfield projects, 26
keeping track of objects, 32
predictive maintenance at an oil rig, 35
preventing forest fires with power line fault

detection, 27-29
protecting first responders with intelligent

wearables, 29
real-world products, 27-32
transforming signals, 39-41
types of applications, 32-41
understanding elephant behavior with smart

collars, 30-32
understanding people and living things,

36-39
understanding/controlling systems, 34-36
wildlife monitoring, 357-405

real-world testing, 321-322
quality assurance testing, 321
usability testing, 322

recall (algorithmic performance metric),
324-326
confidence thresholds, 325
defined, 324
positive/negative rates, 326

receiver operating characteristic (ROC) curve,
327-328

records (dataset element), 201
recovery plans, 340
regression algorithms, 97
regression analysis, 105
reliability (BLERP element), 16
remote work meetings, blurring background

during, 40
representative datasets, ensuring, 225-227
resampling, 88
rescaling, 95

Index | 483

resizing images, 89
resource constraints, 198
responsible AI, xxi

AI ethics and, 43-46
black boxes, 46-49
building applications responsibly, 41-52
dataset construction, 206-209
edge AI workflow, 171
edge AI-enabled consumer products, 446
ensuring domain expertise, 209
evaluation and, 319, 337
harm prevention, 342
harmful technology and, 49-52
key terms, 45
minimizing dataset unknowns, 208
review in bootstrapping process, 305
values in design, 43
values-based design goals, 277

Responsible AI Licenses (RAIL), 52
risk management, 171

metadata and, 224
predeployment tasks, 339

ROC (receiver operating characteristic) curve,
327-328

ROM (read-only memory), 70, 330
root mean squared error (RMSE), 329
rotary encoders, 63
RTLS (real-time locating systems), 63
RTOS (real-time operating system), 159
rule-based algorithms (see heuristics)
Rumsfeld, Donald, 208

S
safety/health monitoring toys, 444
sample rate, acoustic sensor, 60
sampled data, 345
sampling, reviewing data by, 227-229, 344-346
Sampson, Ovetta, ten design principles,

270-271
SBCs (single board computers), 80
scenery, image sensors and, 60-62
scikit-learn, 143
SciPy, 143, 146
scripting languages, 138
seaborn, 144
seasonality, 227
security practitioners, 132
segmentation, 40
segmentation algorithms, 98

self-driving cars, 15
limitations of, 272
Uber self-driving car death caused by insuf‐

ficient data, 41, 46, 207
semi-supervised learning, 237-240, 245
semiconductor detectors, 65
sensor data, as focus of edge AI, 20
sensor fusion, 93-94, 416
sensor fusion flow, 285
sensors

acoustic and vibration, 59
basics, 55-58
bicyclist monitor use case, 449
choices for data logging, 305
combining features and sensors, 93-95
consumer products, 445
difficulties of data capture at the edge, 218
environmental, biological, chemical, 65
food quality assurance, 412
force and tactile, 63
motion and position, 62
optical, electromagnetic, radiation, 64
types of, 58
visual and scene, 60-62
wildlife monitoring, 363

sequence models, 109
sequential binary data format, 248
series flow, 283
services, architectural design and, 279
shipping, smart packaging and, 33
signals

transforming, 39-41
types of, 58

simulators, 160
single board computers (SBCs), 80
single-shot detector (SSD), 293
Situnayake, Daniel, 166
SlateSafety BioTrac Band, 29
smart collars, 30-32
smart packaging, 33
smart speakers, 83
SMEs (subject matter experts), 205
SNNs (spiking neural networks), 118
SoC (system-on-chip) devices, 75-77

embedded Linux and, 161
microcontrollers versus, 111

social impact, of edge AI-enabled consumer
products, 446

software engineering tools, 137-141

484 | Index

cloud providers, 140
containerization, 139
dependency management, 139
distributed computing, 140
operating systems, 137
programming/scripting languages, 138

software engineers, 132
software, architectural design and, 279
space exploration, 15
sparse model, 118
spectral analysis, 91
spectrogram, 91
spectroscopy sensors, 65
spiking neural networks (SNNs), 118
splitting data (see data splitting)
SSD (single-shot detector), 293
staged deployment, 349
staged rollout, 341
stakeholders, team building and, 128
standard deviation, 228
standards, for acceptable performance, 198
storage of data (see data storage)
strain gauges, 64
subgroups, analyzing, 335
subject matter experts (SMEs), 205
summary statistics, 346
supervised learning, 104, 237
support vector machine, 105
supporting edge AI applications, 315, 343-356

changing legal standards, 356
ethics and long-term support, 353-356
evolving cultural norms, 355
improving a live application, 350-353
new information and ethical re-evaluation,

354
postdeployment monitoring, 342-349
termination criteria, 354

switches, as sensors, 64
synthetic data, 219, 320, 336
system-on-chip (SoC) devices, 75-77

embedded Linux and, 161
microcontrollers versus, 111

systems
predictive maintenance at an oil rig, 35
understanding/controlling, 34-36

T
tactile sensors, 63
talent acquisition, for edge AI, 132-134

task performance, algorithm optimization and,
116-119

teaching toys, 444
teams, 123-136

algorithm development roles, 130
building, 123-136
diversity, 126-128
domain expertise, 124-126
hiring for edge AI, 132-134
knowledge/understanding roles, 129
learning edge AI skills, 134
planning/execution roles, 130
product engineering roles, 131
psychological safety and ethical AI, 51
roles and responsibilities, 129-132
stakeholders, 128
technical services roles, 132

technical services, as team role, 132
technological feasibility, 192-196

brainstorming ideas for warehouse security
application, 194-195

device capabilities and solution choice, 196
framing problems, 195

temperature sensors, 66
TensorBoard, 149
TensorFlow, 147-148
TensorFlow Federated, 157
TensorFlow Lite, 148, 161
TensorFlow Model Optimization Toolkit, 148
termination criteria, 354
testing and iteration

automated hardware testing, 161
developing edge AI applications, 306-313
ethical AI review, 312
feedback loops, 307-309
iterations in practice, 309-312
Live classification tab, 392, 430, 463
local model testing, 395
model cards, 312
Model testing tab, 393, 431, 465
real-world testing, 321-322
simulated real-world testing, 320
wildlife management model, 392-395

testing bias, 48
testing dataset, 334
testing split

defined, 256
when to use, 257

text data formats, 247

Index | 485

thermal energy metrics, 334
tilt sensors, 62
time constraints, understanding, 198
time domain, 91
time of flight sensors, 63
time series data, 55, 86-88
Tiny machine learning (TinyML), 12
TinyML for Developing Countries

(TinyML4D), 19
TNR (true negative rate), 326
toast machine, 438
tools, for edge AI development, 136-167

algorithm development tools, 143-153
custom tools versus end-to-end develop‐

ment platforms, 165
edge AI versus regular AI, 23
embedded software engineering/electronics,

157-162
end-to-end development platforms, 162
machine learning sensors, 167
running algorithms on-device, 153-157
software engineering, 137-141
working with data, 141-142

toys, 444
TPR (true positive rate), 326

(see also recall)
tracking collars, 30-32
tracking objects, 32
trail cameras, 38

(see also camera traps)
BLERP analysis, 174
problem description, 172
spotting rare wildlife with, 38

training
edge AI versus regular AI, 19
on-device, 119-121

training split, 256
transfer learning, 109
transformation algorithms, 100
true negative rate (TNR), 326
true positive rate (TPR), 326

(see also recall)

U
Uber Eats, 410
Uber, self-driving car death caused by insuffi‐

cient data, 41, 46, 207
uncertainty sampling, 239
undersampling, 254

universal function approximators, 107
unknown unknowns, 208
unsupervised learning, 104, 237
updates, over-the-air, 121
upgrading an existing edge solution, 276
upsampling, 88
usability testing, 322
use cases (see real-world edge AI applications)
user reports, 349
Uyghurs, 49

V
validation split, 256
values

in design, 43
reviewing for ethical issues before deploy‐

ment, 340
vehicles (see self-driving cars)
versioning, 222
vibration sensors, 59
video, as data, 58
videoconferencing, blurring background dur‐

ing, 40
virtual data, 66-68
virtual machines, 155
virtual sensors, 41
Visual mode (Edge Impulse option), 381-385
visual sensors, 60-62
Visual Wake Words dataset, 192
visualization tools, 144
voice assistant, 83
volatile memory, 69
voltage sensors, 65

W
Warden, Pete, 167
warehouse security application

brainstorming ideas for, 194-195
dataset feasibility test, 192
ethical feasibility review, 188
Wizard of Oz testing, 189

wearables, intelligent, 29
web browser, creating autosample on, 420
weighting of subgroups, 254
weightlifting workouts, tracking, 268
Weights & Biases, 149
wildlife conservation, 358
wildlife monitoring use case, 357-405

AI for Good, 403

486 | Index

bootstrapping, 366
data collection, 370-371
dataset gathering, 367-378
dataset licensing and legal obligations, 376
dataset limitations, 375
defining machine learning classes, 367
deployment, 395-401
deployment of model to computer or

mobile phone, 397
design considerations, 363
digital signal processing block, 380
DSP and machine learning workflow,

379-389
Edge Impulse Studio for dataset gathering,

368
environmental impact, 364-366
existing datasets, 404
existing solutions, 360
goal setting, 359
hardware configuration, 370
hardware/sensor choices, 369
Impulse runner, 401
iNaturalist for dataset creation, 372-375

iterate and feedback loops, 401-403
library creation, 396
machine learning block, 381-389
model testing, 392
prebuilt binary flashing, 400
problem exploration, 358
related works, 404-405
research works, 405
solution design, 360-367
solution exploration, 359
uploading data to Edge Impulse, 377

wildlife research/management
spotting rare wildlife with trail cameras, 38
understanding elephant behavior with smart

collars, 30-32
windows (time series division), 86
Wizard of Oz prototype, 189
workflow, edge AI, 169-171

Z
Z score, 228
zero-shot learning, 207

Index | 487

About the Authors
Daniel Situnayake is head of machine learning at Edge Impulse, where he leads
embedded machine learning research and development. He is coauthor of the
O’Reilly book TinyML: Machine Learning with TensorFlow Lite on Arduino and Ultra-
Low Power Microcontrollers, the standard textbook on embedded machine learning,
and has delivered guest lectures at Harvard, UC Berkeley, and UNIFEI. Dan previ‐
ously worked on TensorFlow Lite at Google, and cofounded Tiny Farms, the first US
company using automation to produce insect protein at industrial scale. He began
his career lecturing in automatic identification and data capture at Birmingham City
University.

Jenny Plunkett is a senior developer relations engineer at Edge Impulse, where she is
a technical speaker, developer evangelist, and technical content creator. In addition to
maintaining the Edge Impulse documentation, she has also created developer-facing
resources for Arm Mbed OS and Pelion IoT. She has presented workshops and
tech talks for major tech conferences such as the Grace Hopper Celebration, Edge
AI Summit, Embedded Vision Summit, and more. Jenny previously worked as a
software engineer and IoT consultant for Arm Mbed and Pelion. She graduated with
a BS in electrical engineering from The University of Texas at Austin.

Colophon
The animal on the cover of AI at the Edge is a Siberian ibex (Capra sibirica). They
can be found across Asia in places like China, Mongolia, Pakistan, and Kazakhstan.
Siberian ibexes are essentially a large species of wild goat. The color of their fur
ranges from dark brown to light tan with an occasional reddish tint. Males have large,
black, ringed horns while females have smaller gray horns. Both sexes have beards.
Their coat lightens in color during the winter and darkens during the summer. They
tend to travel in single-sex herds of 5 to 30 animals.

The ideal habitat for Siberian ibexes is above the tree line on steep slopes and rocky
scree. They can be found as low as 2,300 feet in semiarid deserts. Their diet consists
mainly of grasses and herbs found in scrublands and grasslands.

Because Siberian ibexes are found in abundance in their natural habitat, they are
considered a species of Least Concern even though their population is decreasing.
Their biggest threat is hunting for food and poaching for sport. Many of the animals
on O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black-and-white engrav‐
ing from #e Natural History of Animals. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

https://learning.oreilly.com/library/view/tinyml/9781492052036
https://learning.oreilly.com/library/view/tinyml/9781492052036

	Cover
	Edge Impulse
	Copyright
	Table of Contents
	Foreword from Edge Impulse
	Foreword
	Preface
	About This Book
	What to Expect
	What You Need to Know Already
	Responsible, Ethical, and Effective AI
	Further Resources
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. A Brief Introduction to Edge AI
	Defining Key Terms
	Embedded
	The Edge (and the Internet of Things)
	Artificial Intelligence
	Machine Learning
	Edge AI
	Embedded Machine Learning and Tiny Machine Learning
	Digital Signal Processing

	Why Do We Need Edge AI?
	To Understand the Benefits of Edge AI, Just BLERP
	Edge AI for Good
	Key Differences Between Edge AI and Regular AI

	Summary

	Chapter 2. Edge AI in the Real World
	Common Use Cases for Edge AI
	Greenfield and Brownfield Projects
	Real-World Products

	Types of Applications
	Keeping Track of Objects
	Understanding and Controlling Systems
	Understanding People and Living Things
	Transforming Signals

	Building Applications Responsibly
	Responsible Design and AI Ethics
	Black Boxes and Bias
	Technology That Harms, Not Helps

	Summary

	Chapter 3. The Hardware of Edge AI
	Sensors, Signals, and Sources of Data
	Types of Sensors and Signals
	Acoustic and Vibration
	Visual and Scene
	Motion and Position
	Force and Tactile
	Optical, Electromagnetic, and Radiation
	Environmental, Biological, and Chemical
	Other Signals

	Processors for Edge AI
	Edge AI Hardware Architecture
	Microcontrollers and Digital Signal Processors
	System-on-Chip
	Deep Learning Accelerators
	FPGAs and ASICs
	Edge Servers
	Multi-Device Architectures
	Devices and Workloads

	Summary

	Chapter 4. Algorithms for Edge AI
	Feature Engineering
	Working with Data Streams
	Digital Signal Processing Algorithms
	Combining Features and Sensors

	Artificial Intelligence Algorithms
	Algorithm Types by Functionality
	Algorithm Types by Implementation
	Optimization for Edge Devices
	On-Device Training

	Summary

	Chapter 5. Tools and Expertise
	Building a Team for AI at the Edge
	Domain Expertise
	Diversity
	Stakeholders
	Roles and Responsibilities
	Hiring for Edge AI
	Learning Edge AI Skills

	Tools of the Trade
	Software Engineering
	Working with Data
	Algorithm Development
	Running Algorithms On-Device
	Embedded Software Engineering and Electronics
	End-to-End Platforms for Edge AI

	Summary

	Chapter 6. Understanding and Framing Problems
	The Edge AI Workflow
	Responsible AI in the Edge AI Workflow

	Do I Need Edge AI?
	Describing a Problem
	Do I Need to Deploy to the Edge?
	Do I Need Machine Learning?
	Practical Exercise

	Determining Feasibility
	Moral Feasibility
	Business Feasibility
	Dataset Feasibility
	Technological Feasibility
	Making a Final Decision
	Planning an Edge AI Project

	Summary

	Chapter 7. How to Build a Dataset
	What Does a Dataset Look Like?
	The Ideal Dataset
	Datasets and Domain Expertise
	Data, Ethics, and Responsible AI
	Minimizing Unknowns
	Ensuring Domain Expertise

	Data-Centric Machine Learning
	Estimating Data Requirements
	A Practical Workflow for Estimating Data Requirements

	Getting Your Hands on Data
	The Unique Challenges of Capturing Data at the Edge

	Storing and Retrieving Data
	Getting Data into Stores
	Collecting Metadata

	Ensuring Data Quality
	Ensuring Representative Datasets
	Reviewing Data by Sampling
	Label Noise
	Common Data Errors
	Drift and Shift
	The Uneven Distribution of Errors

	Preparing Data
	Labeling
	Formatting
	Data Cleaning
	Feature Engineering
	Splitting Your Data
	Data Augmentation
	Data Pipelines

	Building a Dataset over Time
	Summary

	Chapter 8. Designing Edge AI Applications
	Product and Experience Design
	Design Principles
	Scoping a Solution
	Setting Design Goals

	Architectural Design
	Hardware, Software, and Services
	Basic Application Architectures
	Complex Application Architectures and Design Patterns
	Working with Design Patterns

	Accounting for Choices in Design
	Design Deliverables

	Summary

	Chapter 9. Developing Edge AI Applications
	An Iterative Workflow for Edge AI Development
	Exploration
	Goal Setting
	Bootstrapping
	Test and Iterate
	Deployment
	Support

	Summary

	Chapter 10. Evaluating, Deploying, and Supporting Edge AI Applications
	Evaluating Edge AI Systems
	Ways to Evaluate a System
	Useful Metrics
	Techniques for Evaluation
	Evaluation and Responsible AI

	Deploying Edge AI Applications
	Predeployment Tasks
	Mid-Deployment Tasks
	Postdeployment Tasks

	Supporting Edge AI Applications
	Postdeployment Monitoring
	Improving a Live Application
	Ethics and Long-Term Support

	What Comes Next

	Chapter 11. Use Case: Wildlife Monitoring
	Problem Exploration
	Solution Exploration
	Goal Setting
	Solution Design
	What Solutions Already Exist?
	Solution Design Approaches
	Design Considerations
	Environmental Impact
	Bootstrapping
	Define Your Machine Learning Classes

	Dataset Gathering
	Edge Impulse
	Choose Your Hardware and Sensors
	Data Collection
	iNaturalist
	Dataset Limitations
	Dataset Licensing and Legal Obligations
	Cleaning Your Dataset
	Uploading Data to Edge Impulse

	DSP and Machine Learning Workflow
	Digital Signal Processing Block
	Machine Learning Block

	Testing the Model
	Live Classification
	Model Testing
	Test Your Model Locally

	Deployment
	Create Library
	Mobile Phone and Computer
	Prebuilt Binary Flashing
	Impulse Runner
	GitHub Source Code

	Iterate and Feedback Loops
	AI for Good
	Related Works
	Datasets
	Research

	Chapter 12. Use Case: Food Quality Assurance
	Problem Exploration
	Solution Exploration
	Goal Setting
	Solution Design
	What Solutions Already Exist?
	Solution Design Approaches
	Design Considerations
	Environmental and Social Impact
	Bootstrapping
	Define Your Machine Learning Classes

	Dataset Gathering
	Edge Impulse
	Choose Your Hardware and Sensors
	Data Collection
	Data Ingestion Firmware
	Uploading Data to Edge Impulse
	Cleaning Your Dataset
	Dataset Licensing and Legal Obligations

	DSP and Machine Learning Workflow
	Digital Signal Processing Block
	Machine Learning Block

	Testing the Model
	Live Classification
	Model Testing

	Deployment
	Prebuilt Binary Flashing
	GitHub Source Code

	Iterate and Feedback Loops
	Related Works
	Research
	News and Other Articles

	Chapter 13. Use Case: Consumer Products
	Problem Exploration
	Goal Setting
	Solution Design
	What Solutions Already Exist?
	Solution Design Approaches
	Design Considerations
	Environmental and Social Impact
	Bootstrapping
	Define Your Machine Learning Classes

	Dataset Gathering
	Edge Impulse
	Choose Your Hardware and Sensors
	Data Collection
	Data Ingestion Firmware
	Cleaning Your Dataset
	Dataset Licensing and Legal Obligations

	DSP and Machine Learning Workflow
	Digital Signal Processing Block
	Machine Learning Blocks

	Testing the Model
	Live Classification
	Model Testing

	Deployment
	Prebuilt Binary Flashing
	GitHub Source Code

	Iterate and Feedback Loops
	Related Works
	Research
	News and Other Articles

	Index
	About the Authors
	Colophon

